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Abstract

Models and simulations have been widely used as a means to predict the performance of
systems. Agent-based modeling and agent distillations have recently found tremendous success
particularly in analyzing ground force employment and doctrine. They have also seen wide
use in the social sciences modeling a plethora of real-life scenarios. The use of these models
always raises the question of whether the model is correctly encoded (veri�ed) and accurately
or faithfully represents the system of interest (validated). A variety of groups are involved at
investigating agent-based model veri�cation and validation. This project seeks a new look at the
subject. This project examined the agent-based modeling problem from a historical, �rst prin-
ciples perspective, examines the basic philosophies of model validation, develops and presents
via a case study an initial agent-based modeling developmental methodology more amenable to
validation (or rather sanctioning) and presents the results of applying that methodology to the
agent-based modeling case study.
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Executive Summary

Models and simulations have been widely used as a means to predict the performance of systems.
Agent-based modeling and agent distillations have recently found tremendous success particularly
in analyzing ground force employment and doctrine. They have also seen wide use in the social
sciences modeling a plethora of real-life scenarios. The use of these models always raises the question
of whether the model is correctly encoded (veri�ed) and accurately or faithfully represents the
system of interest (validated). A variety of groups are involved at investigating agent-based model
veri�cation and validation. This project seeks a new look at the subject. This project examined
the agent-based modeling problem from a historical, �rst principles perspective.

This �nal report documents the results of this project, a project that involved four phases.
In phase one, we took an in-depth historical look at agent-based modeling, not from the general
approach of �nding early agent-based modeling papers but rather from the perspective of what
were the scienti�c streams of thought that in�uenced and shaped the current agent-based modeling
paradigm. We then took a similar in-depth look at the philosophies of model validation and tied
the various philosophies to their in�uence on agent-based modeling. These e�orts are documented
in Sections 1 and 2, respectively.

The Bay of Biscay was a WWII application of that newly titled systems approach to problem
solving called Operations (or Operational) Research. The historical record of the Bay of Biscay
German U-Boat versus Allied Bomber, sub-hunting campaign has long been the course of operational
research analysis case studies. The Bay of Biscay has also been used as a case study for agent-based
modeling, most recently in [16], [32], and [31]. In Section 3 we describe the Bay of Biscay case study
scenario building mostly upon the work in [16].

In Section 4 we de�ne the requirements for an agent-based modeling sanctioning method and
lay out an initial methodology suitable for such sanctioning. To motivate this work, we spend
time discussing how simulationists develop models. This discussion is based upon a review of the
literature inferring from the authors' discussion how they went about building their models. In
short, agent-based modeling, with its bottom-up design philosophy, requires sanctioning methods
that capture the detail embedded within the models. Thus, we spend time discussing the role of
conceptual modeling.

An initial prototype for an agent-based developmental methodology is presented in Section 5.
The focus is to provide the modeling details within a conceptual design framework that would
ultimately promote the sanctioning of ensuing agent-based models. This methodology is tested
against the Bay of Biscay case study. In our particular case, this was limited to Scenario 1 from the
work in [16].
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1 Introduction and Background of Agent-Based Modeling

Over the years Agent-Based Modeling (ABM) has become a popular tool used to model and un-

derstand the many complex, nonlinear systems seen in our world [23]. As a result, many papers

geared toward modelers discuss the various aspects and uses of ABM. The topics covered typically

include an explanation of ABM, when to use it, how to build it and with what software, how results

can be analyzed, research opportunities, and discussions of successful applications of the modeling

paradigm. It is also typical to �nd within these papers brief discussions about the origins of ABM,

discussions that tend to emphasize the diverse applications of ABM as well as how some funda-

mental properties of ABM were discovered. However, these historical discussions often do not go

into much depth about the fundamental theories and �elds of inquiry that would eventually lead to

ABM's emergence. Thus, in this report we re-examine some of the scienti�c developments in com-

puters, complexity, and systems thinking that helped lead to the emergence of ABM by shedding

new light onto some old theories and connecting them to several key ABM principles of today. This

report should not be considered a complete account of the �eld, but instead provides a historical

perspective into ABM and complexity intended to provide a clearer understanding of the �eld, show

the bene�ts to be gained by understanding the diverse origins of ABM, and hopefully spark further

interest into the many other theories and ideas that laid the foundation for the ABM paradigm of

today.

1.1 The Beginning: Computers

The true origins of ABM can be traced back hundreds of years to a time when scientists �rst began

discovering and attempting to explain the emergent and complex behavior seen in nonlinear systems.

Some of these more familiar discoveries include Adam Smith's Invisible Hand in Economics, Donald

Hebb's Cell Assembly, and the Blind Watchmaking in Darwinian Evolution [4]. In each of these

theories simple individual entities interact with each other to produce new complex phenomena

that seemingly emerge from nowhere. In Adam Smith's theory, this emergent phenomena is the

Invisible Hand, which occurs when each individual tries to maximize their own interests and as

6



a result tend to improve the entire community. Similarly, Donald Hebb's Cell Assembly Theory

states that individual neurons interacting together form a hierarchy that results in the storage and

recall of memories in the human brain. In this case, the emergent phenomena is the memory formed

by the relatively simple interactions of individual neurons. Lastly, the emergent phenomena in

Darwinian Evolution is that complex and specialized organisms resulted from the interaction of

simple organisms and the principles of natural selection.

Although these theories were brilliant for their time, in retrospect, they appear marred by the

prevalent scienti�c philosophy of the time. Newton's Philosophy, which is still common today,

posited that given an approximate knowledge of a system's initial condition and an understanding

of natural law, one can calculate the approximate future behavior of the system [27]. Essentially,

this view creates the idea that nature is a linear system reducible into parts that eventually can

be put back together to resurrect the whole system. Interestingly, it was widely known at the

time that there were many systems where this reductionism approach did not work. These type of

systems were called nonlinear because the sum output of the parts did not equal the output of the

whole system. One of the more famous nonlinear systems is the Three Body Problem of classical

mechanics, which shows that it is impossible to mathematically determine the future states of three

bodies given the initial conditions.

Despite observing and theorizing about emergent behavior in systems, scientists of the time did

not have the tools available to fully study and understand these nonlinear systems. Therefore, it was

not until theoretical and technological advances were made that would lead to the invention of the

computer that scientists could begin building models of these complex systems to better understand

their behavior. Some of the more notable theoretical advances that led to the invention of the

computer were �rst made by Gödel with his famous work in establishing limitations of mathematics

[15] and then by Turing in 1936 with his creation of the Turing Machine. The fundamental idea

of the theoretical Turing Machine is that it can replicate any mathematical process, which was

a big step in showing that machines were capable of representing systems. Furthermore, Turing

and Church later developed the Church-Turing Hypothesis which hypothesized that a machine
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could duplicate not only the functions of mathematics, but also the functions of nature [52]. With

these developments, scientists had the theoretical foundation onto which they could begin building

machines to try and recreate the nonlinear systems they observed in nature.

Eventually, these machines would move from theoretical ideas to the computers that we are

familiar with today. The introduction of the computer into the world has certainly had a huge

impact, but its impact in science as more than just a high speed calculator or storage device is

often overlooked. When the �rst computers were introduced, Von Neumann saw them has having

the ability to �break the present stalemate created by the failure of the purely analytical approach

to nonlinear problems� by giving scientists the ability to heuristically use the computer to develop

theories [77]. The heuristic use of computers, as viewed by Von Neumann and Ulam, is very

much like the traditional scienti�c method except that the computer replaces or supplements the

experimentation process [77]. By using a computer to replace real experiments, Von Neumann's

process would �rst involve making a hypothesis based on information known about the system,

building the model in the computer, running the computer experiments, comparing the hypothesis

with the results, forming a new hypothesis, and repeating these steps as needed [77]. The essential

idea of this empirical method is to understand that the computer serves as a simulation of the real

system, which allows more �exibility in collecting data and controlling conditions as well as better

control of the timeliness of the results.

1.2 The Synthesis of Natural Systems: Cellular Automata and Complexity

Once computers were invented and became established, several di�erent research areas appeared

with respect to understanding natural systems. One such area was focused primarily on synthesizing

natural systems [49] and was led primarily by the work of Von Neumann and his theory on self-

reproducing automata, which are self-operating machines or entities. In a series of lectures, Von

Neumann presents a complicated machine that possesses a blueprint of information that controls

how the machine acts, including the ability to self-reproduce [77]. This key insight by Von Neumann

to focus not on engineering a machine, but on passing information was a precursor to the discovery

of DNA which would later inspire and lead to the development of genetic algorithm search processes.

8



However, despite his many brilliant insights, Von Neumann's machine was very complicated since

he believed that a certain level of complexity was required in order for organisms to be capable of

life and self-reproduction [52]. Although it is certainly true that organisms are fairly complex, Von

Neumann seemed to miss the idea that would later be discovered that global complexity can emerge

from simple local rules [27].

With the idea that complexity was needed to produce complex results, reductionism still being

the prevalent scienti�c methodology employed, and perhaps spurred on by the idea of powerful

serial computing capabilities, many scientists began trying to synthesize systems from the top-down.

As brie�y discussed earlier, the idea of top-down systems analysis is to take the global behavior,

discompose it into small pieces, understand those pieces, and then put them back together to

reproduce or predict future global behavior. This top-down methodology was primarily employed

in the early applications of Arti�cial Intelligence, where the focus was more on de�ning the rules of

intelligence-looking and creating intelligent solutions rather than the focus being on the structure

that creates intelligence [15]. Steeped in the traditional idea that systems are linear, this approach

did not prove to be extremely successful in understanding the complex nonlinear systems found in

nature [49].

Although Von Neumann believed that complexity was needed to represent complex systems, his

colleague Ulam suggested that this self-reproducing machine could be more easily represented using

a Cellular Automata (CA) approach. As the name may suggest, CA are self-operating entities that

exist in individual cells that are adjacent to one another in a 2-D space like a checkerboard and

have the capability to interact with the cells around it. The impact of taking the CA approach

was signi�cant for at least two reasons. The �rst is that CA is a naturally parallel system where

each cell can make autonomous decisions simultaneously with other cells in the system [49]. This

change from serial to parallel systems was signi�cant because it is widely recognized that many

natural systems are parallel [77]. The second reason the CA approach had a signi�cant impact on

representing complex systems is that CA systems are composed of many locally controlled cells that

together create a global behavior. This CA architecture requires engineering a cell's logic at the
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local level in hopes that it will help create the desired global behavior [49]. Ultimately, CA would

lead to the bottom-up approach now mainly employed by the �eld of Arti�cial Life because it is

more naturally inclined to produce the same global behavior that is seen to emerge in complex,

nonlinear systems.

Eventually Von Neumann and Ulam were able to successfully create a paper-based self-reproducing

CA system which was much simpler than Von Neumann's previous e�orts. As a result, some sci-

entists began using CA systems to synthesize and understand complexity and natural systems.

Probably the most notable and famous use of CA was Conway's �Game of Life.� In this CA sys-

tem, which started out as just a Go Board with pieces representing the cells, only three simple

rules were used by each cell to determine whether it would be colored white or black based on

the color of cells around it. Using this game, it was found that depending upon the starting con-

�guration, certain shapes or patterns such as the famous glider would emerge and begin to move

across the board where it might encounter other shapes and create new ones as if mimicking a very

crude form of evolution. After some research, a set of starting patterns were found that would

lead to self-reproduction in this very simple system [52]. For more information on the �Game of

Life,� to see some of the famous patterns, and to see the game in action the reader can go to

http://en.wikipedia.org/wiki/Conway's_Game_of_Life. However, this discovery that simple rules

can lead to complex and unexpected emergent behavior was not an isolated discovery. Many others

would later come to the same conclusions using CA systems, including Schelling's famous work in

housing segregation which showed that the many micromotives of individuals can lead to macrobe-

havior of the entire system [69].

Upon discovering that relatively simply CA systems were capable of producing emergent behav-

ior, scientists started conducting research to further determine the characteristics and properties of

these CA systems. One of the �rst of these scientists was mathematician Wolfram, who published

a series of papers in the 1980's on the properties and potential uses of 2-dimensional CA. In his

papers, Wolfram creates four classi�cations into which di�erent CA systems can be placed based on

their long-term behavior. A description of these classi�cations is found in Table 1. Langton would
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Table 1: Cellular Automata Classi�cations [87]

Class Properties

1 Evolves to a homogeneous state, changes to the initial state has no impact on �nal
state

2 Evolves into a set of simple periodic states, changes to the initial state has a �nite
regional impact on the �nal state

3 Evolves into patterns that grow inde�nitely, changes to the initial state leads large
changes to the �nal state

4 Evolves to complex localized patterns that expand and contract with time, changes
to the initial state leads to irregular changes to the �nal state

later take this research further and described that life, or the synthesis of life, exists only in class

4 systems, which is to say that life and similar complex systems exist between order and complete

instability [52]. As a result, it was concluded that in order to create complex systems that exhibit

emergent behavior, one must be able to �nd the right balance between order and instability or else

the system will either collapse on itself or explode inde�nitely.

Armed with these discoveries about synthesizing complex systems and emergent behavior, many

scientists in the �elds of ecology, biology, economics, and other social sciences began using CA to

model systems that were traditionally very hard to study due to their nonlinearity [20]. However,

as technology improved, the lessons learned in synthesizing these nonlinear systems with CA would

eventually lead to models where autonomous agents would inhabit environments free from restriction

of their cells. Such models include Reynold's �boids� which exhibited the �ocking behavior of birds

and Langton's �vants� which exhibited the behavior of ants [52]. Advanced studies include the

in�uential Epstein and Axtell [20] exposition of CA models involving their Sugarscape model and

Illachinski's [?] ISAAC e�ort that arguably introduced the military to the use of CA. However, to

better understand agents, their origins, and behaviors another important perspective of agents, the

analysis of natural systems, should be examined.

1.3 The Analysis of Natural Systems: Cybernetics and Chaos

While Von Neumann was working on his theory of self-reproducing automata and asking, 'what

makes a complex system,' Wiener and others were developing the �eld of cybernetics [49] and
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asking the question, 'what do complex systems do [1]?' Although these two questions are related,

each is clearly focused on di�erent aspects of the complexity problem and led to two di�erent, but

related, paths toward discovering the nature of complexity, the latter course of inquiry become

cybernetics. According to Wiener, cybernetics is �the science of control and communication in the

animal and the machine� [80] and has it's origins in the control of the anti-aircraft �ring systems

of World War II [49]. Upon �ne tuning the controls, scientists found that feedback and sensitivity

were very important and began formalizing theories about the control and communications of these

systems having feedback. Eventually they would discover that the same principles found in the

control of machines were also true for animals, such as the activity of recognizing and picking up

an object [80]. This discovery would lead cybernetics to eventually be de�ned by Ashby as a ��eld

concerned with understanding complexity and establishing foundations to study and understand it

better� [1], which includes the study of both machines and organisms as one system entity.

One of the main tools used in cybernetics to begin building theories about complex systems

was Information Theory as it allowed scientists to think about systems in terms of coordination,

regulation, and control. Armed with this new mathematical theory of the time, those studying

cybernetics began to develop and describe many theories and properties of complex systems. One

of these discoveries about complex systems was the importance of feedback on the long-term patterns

and properties of complex systems. In general, complex systems consist of a large number of tightly

coupled pieces that together receive feedback that in�uences the system's future behavior. Based

on this information, Ashby explains that complex systems will exhibit di�erent patterns depending

upon the type of feedback found in the system. If the feedback is negative (i.e., the Lyapunov

Exponent, λ < 0), then the patterns will become extinct or essentially reach a �xed point. If the

feedback is zero (λ = 0), then the pattern will remain constant or essentially be periodic. Finally,

if the feedback is positive (λ > 0), then the patterns would grow inde�nitely and out of control [1].

It is important to note that these three properties of complex systems, as expressed by Ashby in

1962, directly relate to Wolfram's �rst three classi�cations of two-dimensional CA systems. However,

just as Von Neumann failed to make certain observations about complexity, so did the founders of
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Table 2: Comparison of Complex Systems Classi�cations

Wolfram's CA
Classi�cation

Lyapunov's
Exponent
Value

Properties

1 all λ < 0 Evolves to a homogeneous (�xed attractor)
2 λ = 0 & λ < 0 Evolves into a set of simple periodic states (periodic

attractor)
3 all λ > 0 Evolves into patterns that grow inde�nitely
4 λ > 0 & λ < 0 Evolves to chaotic state (strange attractor)

cybernetics fail to consider what would happen if both positive and negative feedback simultaneously

existed in a system. It was not until later that Shaw used Information Theory to show that if at least

one component of a complex system has a positive Lyapunov Exponent, and was mixed with other

components with varying exponent values, then the system will exhibit chaotic patterns [27]. As

it may be expected, this classi�cation of systems directly relates to Wolfram's fourth classi�cation

of two-dimensional CA systems, where life is thought to exist. Table 2 provides our comparisons

between Wolfram's classi�cations and the discussed properties of complex systems.

With Shaw's discovery that complex systems can exhibit chaotic behavior, scientists began

considering what further impacts Chaos Theory might have on understanding complex systems. In

general, chaos can be de�ned as deterministic randomness, such that any system exhibiting chaos

will appear to behave randomly with the reality being that the behavior is completely deterministic

[15]. However, this does not mean that the system is completely predictable. As Lorenz was �rst to

discover with his simulation of weather patterns, it is impossible to make long-term predictions of a

chaotic system with a simulated model because it is infeasible to record all of the initial conditions at

the required level of signi�cance [27]. This sensitivity to initial conditions results from the fact that

the initial conditions are in�nitely many random numbers, which implies they are incompressible

and in�nitely long. Therefore, collecting these initial conditions to the required level of signi�cance

is impossible without a measurement device capable of collecting an in�nite number of in�nitely

long numbers as well as �nding a computer capable of handling all of those in�nitely long numbers.

It may seem that this property of chaos has at some level discredited the previously mentioned
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Church-Turing Hypothesis by suggesting that these types of natural complex systems cannot be

duplicated by a machine. However, there are several other properties of chaos that help those at-

tempting to model and understand these complex systems despite the inability to directly represent

them. The �rst is that chaotic systems have a strange attractor property that keep these aperiodic

systems within some de�nable region [27]. This is obviously good for those studying these complex

systems because it limits the region of study into a �nite space. The other property of these complex

systems is that they can be generated using a very simple set of rules or equations. By using a

small set of rules or equations, and allowing the results to act as a feedback into the system, the

complexity of these systems seems to emerge out of nowhere. As one can recall, the same discovery

was made in CA when cells with simple rules were allowed to interact dynamically with each other

[27]. Therefore, it appears that although natural complex systems cannot be modeled directly, some

of the same emergent properties and behavior of these systems can be generated in a computer using

simple rules (i.e., the bottom-up approach) without complete knowledge of the entire real system.

Perhaps it is not surprising that the idea that complex systems can be represented su�ciently with

a simpler model, often called a Homomorphic Model, has long been a fundamental concept when

studying complex systems [1].

Whenever discussing the idea that simple rules can be used to model complex systems it is

valuable to mention fractals, which are a closely related to and often a fundamental component of

Chaos Theory. First named by Mandelbrot, fractals are geometric shapes that regardless of the scale

show the same general pattern. The interesting aspect of fractals is that because of their scale-free,

self-similar nature they can both �t within a de�ned space and have an in�nite perimeter, which

makes them complex and relates them very closely to the e�ect strange attractors can have on a

system. Furthermore, forms of fractals can be observed in nature and, in turn, generated in labs

using very simple rules, which shows that they also exhibit the same type of emergent behavior

and properties as the previously discussed complex systems [27]. As a result, although fractals,

chaos, and complex systems have a lot in common, fractals, due to their physical representation,

provide an insightful look into the architecture of complexity. Essentially, fractals are composed
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of many similar subsystems of in�nitely many more similar subsystems of the same shapes, which

results in a natural hierarchy and the emergence of other, similar shapes. It is interesting to

note that the architecture of fractals directly shows why reductionism does not work for nonlinear

systems. With fractals, a scientist could forever break the fractal into smaller pieces and never

be able to measure it's perimeter. Another interesting aspect about the architecture of fractals

is that they naturally form a hierarchy, which means the properties of hierarchies could possibly

be exploited when attempting to model and understand complex systems. For example, the fact

that Homomorphic models are e�ective at modeling complex systems could come from the fact that

hierarchical systems are composed of subsystems such that the subsystems can be represented not

as many individual entities but as a single entity [72].

Besides showing that emergent behavior can be explained using chaos, which in turn can be

simply represented in a model, there are other properties of chaos which give insight into complex

natural systems and ABM. Returning to the idea that it is impossible to satisfactorily collect all of

the initial conditions to obtain an exact prediction of a chaotic system, one might ask what would

happen if the needed initial conditions were collected, but not to the in�nite level of detail? It

turns out that such a model would be close for the very short term, but would eventually diverge

from the actual system being modeled. This example brings about another property of chaotic

systems; hey are very sensitive to the initial conditions [15]. Because this sensitivity property of

chaos ultimately leads to unreliable results when compared to the actual system and the models

only being homomorphic, it can be seen that these computer models are unlikely to aid any decision

about how to handle the real system. Instead, it can be concluded that these models should be used

to provide insights into the general properties of a complex system and not for forecasting `hard'

statistics like mean performance. Essentially, this methodology of using a computer for inference

and insight harps back to Von Neumann's idea of using a computer to facilitate an experiment with

hopes to gain insights about the system rather than using the computer to generate exact results

about the future states of the system [77].

The �nal property of chaos that can give insight into complex natural systems and ABM is that
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a strange attractor not only limits the state space of the system, but it also causes the system to

be aperiodic. In other words, the system with a strange attractor will never return to a previous

state, which results in tremendous variety within the system [15]. In 1962, Ashby examined the

issue of variety in systems and posited the Law of Requisite Variety, which simply states that the

diversity of an environment can be blocked by a diverse system [1]. In essence, Ashby's law shows

that in order to handle a variety of situations, one must have a diverse system capable of adapting

to those various situations. As a result, it is clear that variety is important for natural systems

given the diversity of the environment in which they can exist. In fact, it has been seen that

entities within an environment will adapt to create or replace any diversity that have been removed,

further enforcing the need and importance of diversity [34]. However, it has also been found that

too much variety can be counter productive to a system because it can grow uncontrollably and

be unable to maintain improvements [4]. Therefore, it appears that complex natural systems that

exhibit emergent behavior need to have the right balance between order and variety or positive and

negative feedback, which is exactly what a strange attractor does in a chaotic system. By keeping

the system aperiodic within de�nable bounds, chaotic systems show that the battle between order

and variety is an essential part of complex natural systems. As a result, strange attractors provide

systems with the maximum adaptability.

1.4 Towards Today's ABM: Complex Adaptive Systems

After learning how to synthesize complex systems and discovering some of their properties, the

�eld of Complex Adaptive Systems (CAS), which is commonly referenced as the direct historical

roots of ABM, began to take shape. Primarily, the �eld of CAS draws much of its of inspiration

from biological systems and is concerned mainly with how complex adaptive behavior emerges in

nature from the interaction among autonomous agents [53]. One of the fundamental contributions

made to the �eld of CAS, and in turn ABM, was Holland's identi�cation of the four properties

and three mechanisms that compose all CAS [34]. Essentially, these items have aided in de�ning

and designing ABM as they are known today [53] because Holland takes many of the properties of

complex systems discussed earlier and places them into clear categories, allowing for better focus,
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development, and research.

The �rst property of CAS discussed by Holland is Aggregation, which essentially states that

all CAS can be generalized into subgroups and similar subgroups can be considered and treated

the same. As can be seen, this property of CAS directly relates to the hierarchical structure of

complex systems discussed early. Furthermore, not only in 1962 did Simon discussed this property

of complex systems, he also discussed several other hierarchical ideas about the architecture of

complex systems [72] that can be related to two of Holland's mechanisms of CAS. The �rst is

Tagging, which is the mechanism that classi�es agents, allows the agents to recognize each other,

and allows easier observation of the system. Essentially, this classi�cation is nothing more than a

means of putting agents into subgroups within some sort of hierarchy. The second mechanism is

Building Blocks, which is the idea that simple subgroups can be decomposed from complex systems

that in turn can be reused and combined in many di�erent ways to represent patterns. Besides

being related to Simon's discussion of the decomposability of complex systems, this mechanism also

re�ects the common theme that simplicity can lead to emergent behavior and the theory behind

modeling a complex system. Therefore, it can be seen that the elements of Aggregation, Tagging,

and Building Blocks can be related back to the results discovered by Simon when studying the

architecture of complexity.

Another property of CAS is Nonlinearity, which, as previously discussed, is the idea that the

whole system output is greater than the sum of the individual component output. In essence,

the agents in a CAS come together to create a result such that it cannot be attributed back to

the individual agents. Hopefully, it is now clear that not only is this fundamental property the

inspiration behind synthesizing and analyzing complex systems, but that nonlinearity can also be

the result of dynamic feedback and interactions. These causes of nonlinearity can be related to two

more of Holland's CAS elements. The �rst is the property of Flow, which states that agents in CAS

communicate and that this communication can change with time. As was seen in examples using

CA, having agents communicate with each other and their environment dynamically can lead to

the nonlinearity of emergent behavior. Also, within the property of Flow, Holland discusses several
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interesting e�ects that can result from changes made to the �ow of information such as the Multiplier

E�ect and the Recycling E�ect. In short, the Multiplier E�ect occurs when an input gets multiplied

many times within a system. An example of the Multiplier E�ect is the impact made on many other

markets when a person builds a house. Similarly, the Recycling E�ect occurs when an input gets

recycled within the system and the overall output is increased. An example of the Recycling E�ect

is when steel is recycled from old cars to make more new cars [34]. Interestingly enough, both of

these e�ects can be directly related back to Information Theory and Cybernetics. The other element

that relates to nonlinearity is the Internal Model Mechanism, which gives the agents an ability to

perceive and make decisions about their environment. It is easy to think of this mechanism as

being the rules that an agent follows in the model, such as turning colors based on its surroundings

or moving away from obstacles. From the previous discussion on CA, and from the reoccurring

theme, simple Internal Models can lead to emergent behavior in complex systems. Therefore, the

link between these three elements is the essential nature of complex systems: nonlinearity.

The �nal property discussed by Holland is Diversity. Essentially, Holland states that agents

in CAS are diverse, which means they do not all act the same way when stimulated with a set of

conditions. By having a diverse set of agents, Holland argues that new interactions and adaptations

can develop such that the overall system will be more robust. Of course, the idea that variety

creates more robust systems relates directly back to Ashby's Law of Requisite Variety, which in

turn relates back to strange attractors and Chaos Theory.

1.5 Section Concluding Remarks

For all of positives of ABM there are often just as many, if not more, criticisms of ABM. For the

modeler to successfully defend their model and have it be considered worth any more than a new and

trendy modeling technique, the modeler needs to have a fundamental understanding of the many

scienti�c theories, principles and ideas that lead to ABM and not just an understanding of the `how

to' perspective on emergence and ABM. By gaining deeper understandings of the history of ABM,

the modeler can better contribute to transforming ABM from a potential modeling revolution [8] to

an actual modeling revolution with real life implications. Understanding that ABMs were the result
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of the lack of human ability to understand nonlinear systems allows the modeler to see where ABM

�ts in as a research tool. Understanding the role that computers play in ABM shows the importance

of understanding the properties of computers and in turn their limitations. Understanding that

the fundamental properties of CAS have their origins in many di�erent �elds (Computers, CA,

Cybernetics, Chaos, etc) will give the modeler the ability to better comprehend and explain their

model. For example, understanding Chaos Theory can reveal why ABMs are thought to be incapable

of providing anything more than insight into the model. By understanding each of these individual

�elds and how they are interrelated, a modeler can potentially make new discoveries and better

analyze their model. For example, by understanding the theory behind Cybernetics and Chaos

Theory a modeler would be better equipped in determining the impact that certain rules may have

on the system or in trouble shooting why the system is not creating the desired emergent behavior.

Finally, understanding the history of ABM presents the modeler with a better ability to discern

between and develop new ABM approaches.

As it is often the case, examining history can lead to insightful views about the past, present,

and the future. It is the hope that this report has shed some light on the origins of ABM as

well as the connections between the many �elds from which it emerged. Starting with theories

about machines, moving onto synthesis and analysis of natural systems, and ending with CAS,

it is clear, despite this article being primarily focused on complexity, that many �elds played an

important role in developing the multidisciplinary �eld of ABM. Therefore, in accordance with the

Law of Requisite Variety, it appears wise for those wishing to be successful in ABM to also be

well versed in the many disciplines that ABM encompasses. Furthermore, many insights can be

discovered about the present nature of ABM by understanding the theoretical and historical roots

that compose the rules-of-thumb used in today's ABM. For example, knowing the theory behind

Cybernetics and Chaos Theory could help a modeler in determining the impact that certain rules

may have on the system or in trouble shooting why the system is not creating the desired emergent

behavior. Finally, it could be postulated that understanding the history of ABM presents one with

a better ability to discern between and develop new ABM approaches. In conclusion, this article
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has provided an abbreviated look into the emergence of ABM with respect to complexity and has

made some new connections to today's ABM that can hopefully serve as a starting point for those

interested in understanding the diverse �elds that compose ABM.

2 Philosophies of Validation: Can One Actually Validate Models?

Since the introduction of the computer, simulations have become popular in many scienti�c and

engineering disciplines. This is partly due to a computer simulation's ability to aid in the decision

making and understanding of relatively complex and dynamic systems where traditional analytical

techniques may fail or be impractical. As a result of this ability, the use of simulations can be

found in just about every �eld of study. These �elds can range anywhere from military applications

[18] and meteorology [46] to management science [63], social science [20], nanotechnology [39], and

terrorism [65]. What can be inferred from this wide spread use is that not only are simulations robust

in their application, but they are also practically successful. Due in large part to this robustness

and success, simulations are becoming a fairly standard tool found in most analyst's toolbox. In

fact, proof that simulations are becoming more of a generic analysis tool and less of a new technique

can be found in the increasing number of published articles that use simulations but do not mention

it in the title [48].

However, despite their increasing popularity, a fundamental issue has continued to plague sim-

ulations since their inception [60, 74]: is the simulation an accurate representation of the reality

being studied? This question is important because typically a simulation's goal is to represent some

abstraction of reality and it is believed that if a simulation does not accomplish this representation,

then information gained from the simulation is either worthless or at least not as valuable. There-

fore, one can understand why answering the question of simulation validity is so important, because

having an accurate simulation could mean that knowledge can be gained about reality without

actually observing, experimenting, and dealing with the constraints of reality [77]. As a result of

this potential, many articles over the years have been devoted to the topic of simulation validity

and in particular they each tend to focus on some aspect of the following fundamental questions of
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simulation validity:

• Can simulations represent reality? If not, what can they represent?

• If a simulation cannot or does not represent reality, then is the simulation worth anything?

• How can one show that a simulation is valid? What techniques exist for establishing validity?

• What roles do or should simulations play today?

Given the considerable amount of time and e�ort spent on simulation validity, a reasonable question

to ask is why is simulation validity still haunting simulationists today? In short, the fundamental

reason why it is still an issue today, and will continue to be one, is that the question of a simulation's

validity is really a philosophical question found at the heart of all scienti�c disciplines [74]. By

considering the above questions, one will notice that they closely resemble some typical philosophy

of science questions [40]:

• Can scienti�c theories be taken as true or approximately true statements of what is true in

reality?

• What methods, procedures, and practices make scienti�c theories believable or true?

Therefore, the philosophy of science perspective can shed light on the nature of simulation validity

as it is known today as well as the nature of simulation itself. It is from this fundamental philosophy

of science perspective that this article will attempt to give insights into the fundamental questions

of simulation validity, where current practices in simulation validation �t into the general framework

of the philosophy of science, and what role simulations play in today's world.

With this objective in mind, this article has been divided into four more sections. The �rst

section discusses how the relationship between reality and simulation is �awed such that all simu-

lations do not represent reality. The second section describes what is currently meant by the idea

of simulation validation in pratice. The third section discusses the usefulness of simulations today

and how simulations are becoming the epistemological tool of our time. In the fourth section, the
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usefulness and role of Agent-Based Models as well as the special case they present to simulation

validation is discussed.

2.1 Why All Simulations are Invalid

Prior to proceeding any further, it is valuable to �rst de�ne simulation and discuss how it is typically

seen as related to reality. Although there are many de�nitions of simulation, for this article a

simulation can be generically de�ned as a numerical technique that takes input data and creates

output data based upon a model of a system [51] (for this article the distinction between theory

and model will not be made, instead the term model will be used to represent them together). In

essence, a simulation attempts to show the nature of a model as it changes over time. Therefore,

it can be said that a simulation is a representation of a model and not directly a representation

of reality. Instead, it is the model's job to attempt to represent some level of reality in a system.

In this case, it would appear that a simulation's ability to represent reality really depends upon

the model upon which it is built [18]. Although this relationship between a real system, a model,

and a simulation has been described in many di�erent ways [9, 51, 74, 82], a simpli�ed version of

the cascading relationship used for this article is shown in Figure 1. Also, before proceeding it is

important to note that commonly simulations today are performed by computers because they are

much more e�cient at numerical calculations. Therefore, we assume for this article that a simulation

will be constructed within a computer and that a simulation is a representation of a model which

is in turn a representation of a real system (as shown in Figure 1).

Now that the fundamental relationship between a real system, a model, and a simulation have

been de�ned, the implications of this relationship can be examined. As was already discussed, a

simulation's ability to represent reality �rst hinges on the model's underlying ability to represent

the real system. Therefore, the �rst step in determining a simulation's ability to represent reality

is to examine the relationship between a real system and a model of that real system. To begin,

it must be recognized that a real system is in�nite in its input, how it processes the input, and its

output, and that any model created must always be �nite in nature given our �nite abilities [26].

From this statement alone it can be seen that a model can never be as real as the actual system
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Figure 1: Relationship between a System, a Theory/Model, and a Simulation

and that instead all that can be hoped for is that the model is at least capable of representing some

smaller component of the real system [2]. As a result, it can be said that all models are invalid in

the sense that they are not capable of representing reality completely.

The idea that all models are bad is certainly not a new idea. In fact, it is recognized by many

people that this is true [2, 26, 74] and there are even articles written which discuss what can be done

with some of these bad models to aid in our understanding and decision making [33]. However, if

all models are bad at representing a real system and a model is only capable of representing a small

portion of that real system, then how will it be known if a model actually represents what happens

in the system? In essence, how can we prove that a model is valid at least in representing some

subset of a real system?

The basic answer to this question is that a model can never be proven to be a valid representation

of reality. This can be shown by examining several di�erent perspectives. The �rst perspective can

be explained using Gödel's Incompleteness Theorem [28]. In his theorem, Gödel showed that a
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theory cannot be proven from the axioms upon which the theory was based. In essence, this means

that because every model must be based upon some set of axioms about the real system, there

is no way to prove that any model is correct [26]. Another perspective to consider is that there

are an in�nite number of possible models that can represent any system and it would therefore

take an in�nite amount of time to show that a particular model is the best representation of

reality. Together these perspectives hearken back to one of the fundamental questions found in the

philosophy of science: how can a model be trusted as representing reality?

Although it has been shown that a model cannot be proven to be a correct representation

of reality, it does not mean that the second fundamental question of the philosophy of science

(what methods and procedures make models believable?) has not been thoroughly explored. There

actually exists many belief systems developed by famous philosophers that attempt to provide some

perspective on this question [40, 42]. For instance, Karl Popper believed that a theory could only

be disproved and never proved (Falsi�cationism), others believe that a model is true if it is an

objectively correct re�ection of factual observations (Empiricism) [63]. However, no matter what

one believes to be the correct philosophy, the fundamental idea that remains is that all models are

invalid and impossible to validate. A shining example of this idea can be seen by the fact that

although both are considered geniuses, Einstein still showed that Newton's model of the world was

wrong and therefore it is likely that eventually someone will come up with a new model that seems

to �t in better with our current knowledge of reality [40]. Therefore, regardless of how correct a

model may be believed to be, it is likely that there will always exist another model which is better.

The analysis from the previous paragraphs on the relationship between a real system and a

model have led to the following conjectures about models:

• Models cannot represent an in�nite reality and therefore all models are invalid with respect

to a complete reality;

• Models can only hope to represent some aspect of reality and be less incomplete;

• There are in�nately many models that could represent some aspect of reality and therefore
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no model can ever be proven to be the correct representation of any aspect of reality; and

• A better model than the current model is always likely to exist in the future.

From these conjectures, it appears that a simulation's capability to represent a real system is bleek

based purely on the fact that a model is incapable of representing reality. However, as if things

were not already appearing bad enough for simulation validity based on the model, there still

exists another issue with trying to represent a model with a simulation. As seen graphically in

Figure 1, another round of translation needs to occur before the transition from the system to

the simulation is complete. At �rst glance, translating a model into a computer simulation would

seem to be relatively straightfoward. Unfortunately, this does not appear to be the case even when

programming (veri�cation) issues are left out of the equation. This conclusion generally arises from

to the limitations of the computer. For example, because computers are only capable of �nite

calculations, often times truncation errors may occur in the computer simulation when translating

input into output via the model. Due to these truncation errors alone, widely di�erent results can

be obtained from a simulation of a model with slightly di�erent levels of detail. In fact this result is

often seen in chaotic systems such as Lorenz's famous weather simulations, which would later lead

to the idea of the Butter�y E�ect [27].

Suppose, however infeasible it may be, that advances in computers would make the issues of

memory storage and truncation errors obsolete, then the next issue in a computer simulation's ability

to represent a model is the computer's processing speed. Given that computer processing speeds

are getting increasingly faster with time, the question about whether a computer can process the

necessary information, no matter how large and detailed the model, within an acceptable time seems

to be answered by just waiting until technology advances. Unfortunately, there is a conjecture which

states that there is a speed limit of any data processing system. This processing speed limit, better

known as Bremermann's Limit [2], is based upon Einstein's mass-energy relation and the Heisenberg

Uncertainty Principle and conjectures that no data processing system whether arti�cial or living can

process more than 2∗1047 bits per second per gram of its mass [14]. From this conjecture, it can be

seen that eventually computers will reach a processing limit and that models and the amount of digits
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processed in a respectable amount of time will dwarf Bremermann's Limit. Consider for example

how long it would take a computer approximately the size (6∗1027grams) and age (1010years) of the

Earth operating at Bremermann's Limit to enumerate all of the approximately 10120 possible move

sequences in chess [14] or prove the optimal solution to a 100 city traveling salesperson problem (100!

or approximately 9.33 ∗ 10157 di�erent routes). Given that this super e�cient Earth sized computer

would only be able to process approximately 1093 bits to date, it would approximately 1027 and

9.33 ∗ 1064 times longer than the current age of the earth to enumerate all possible combinations

for each problem respectively. From this it can be concluded that from the human perspective it

would take entirely too long and be entirely too impractical to attempt to solve these problems

using brute force.

As a result of this analysis, it can be seen that at the very least it is challenging for a computer,

given it's memory and processing limitations, to accurately represent a model or provide accurate

results in a practical amount of time. To combat this issue of computing limitations, simulationists

will often build a simulation of a model that incorporates many assumptions, abstractions, distor-

tions and non-realistic entities that are not in the model [46, 58, 74, 83, 84, 86]. Such examples

include breaking continuous functions into discrete functions [46], introducing arti�cial entities to

limit instabilities [46], and creating algorithms which pass information from one abstraction level to

another [85]. From these examples, it can be clearly seen that the limitations of computing makes

translating a model into a simulation very unlikely to result in a completely valid representation of

that model. This is why often simulation building is considered much more of an art rather than a

science, because getting a simulation to appear to represent a model in a computer requires a lot

of tinkering that ends up with a simulation that only appears to represent the model. As a result

of this discussion, it can be seen that not only are there an in�nite number of models that can

represent some aspect of reality, but there is probably also an in�nite number of simulations that

can represent some aspect of a model.

Given the above discussion, the following conjectures can be made about the ability of a computer

simulation to represent a model:
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• Computers are only capable of �nite calculations and �nite storage, therefore truncation errors

and storage limitations may signi�cantly impact the ability of a computer to represent a model;

• Computers can only process information at Bremermann's Limit, making it is impossible for

them to process large amounts of information about a model in a practical amount of time;

• To attempt to represent a model with a computer simulation either requires sacri�cing accu-

racy to get results or sacri�cing time to get better accuracy;

• Given the limitations of computing and the trade o� between accuracy and speed, there are

many ways to try and represent a model with a simulation; and

• Because there are many possible simulations that can represent an aspect of a model, it is

impossible to have a completely valid and still useful simulation of a model.

The conjectures above show why translating a model into a computer simulation is not a straight-

forward process and that many times a simulationist is simply trying to tinker with a simulation

until it happens to be appear to have some representation of the model. This complexity with

translating a model into a simulation only makes the question of a simulation's ability to represent

reality more pressing.

As the section title suggests, the main goal of this section is to show why all simulations are

invalid representations of reality. By examining the relationship between the real system, the model

attempting to represent the system, and the simulation attempting to represent the model, the

following summary conjectures can be made about simulation validity:

1. A real system is in�nite.

2. A model cannot represent an in�nite real system and can only hope to be one of any in�nite

possible representations of some aspect of that real system.

3. As a result of 1 and 2, a model is an invalid representation of the real system and cannot be

proven to be a valid representation of some aspect of the real system.
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4. There are many possible computer simulations that can represent a model and each computer

simulation has trade o�s between the accuracy of the results and time it takes to obtain those

results.

5. As a result of 4, a simulation cannot be said to be a completely valid representation of a

model.

6. Therefore, a computer simulation is an invalid representation of a complete real system and

at the very best cannot be proven to be a valid representation of some aspect of a real system.

The above conjectures lay out the issues with a simulation's ability to represent reality. Furthermore,

it can be seen why simulation validation continues to be a major issue. If simulations cannot be

proven to be valid and are generally invalid representations of a complete real system, then what

value to they serve? However, this question is not the primary source of research in simulation

validation. Instead, much of the focus still remains on how one can validate a simulation. Given the

conjecture that all simulations are invalid, or impossible to prove to be valid, what possibly could

all of these articles mean when discussing simulation validation?

2.2 What Does Simulation Validation Really Mean in Practice?

Untill now, it has been shown that generally all simulations are invalid with respect to a real system,

but there is still a fair amount of literature that continues to attempt to show how a simlation can

be validated. It may initially appear that those practicing simulation building are unware of the

downfalls facing simulation's ability to represent reality, but this is not the case [9, 51]. So what

are these articles and books discussing when they are focused on simulation validation? Insight into

what practioner's really mean by simulation validation can be seen from their own de�nitions of

validation:

�Validation is the process of determining whether a simulation model is an accurate
representation of the system, for the particular objectives of the study� [24, 51]

�Model Validation is substainsiating that a model within its domain of applicability, be-
haves with satisfying accuracy consistent with the models and simulations objectives...�
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[7, 68]

�Validation is concerned with building the right model. It is utilized to determine that
a model is an accurate representation of the real system. Validation is usually achieved
through the calibration of the model, an iterative process of comparing the model to
actual system behavior and using the discrepancies between the two, and the insights
gained, to improve the model. This process is repeated until the model accuracy is
judged to be acceptable.� [9]

�Validation is the process of determining the manner in which and degree to which a
model and its data is an accurate representation of the real world from the perspective
of the intended uses of the model and the subjective con�dence that should be placed
on this assessment.� [17]

These de�nitions clearly indicate that in practice simulation validation takes on a somewhat

subjective meaning. Instead of validation just being the process of determining the accuracy of a

simulation to represent a real system, all of the above authors are forced to add the clause `with

respect to some objectives' because it has been shown why a simulation can never accurately and

completely represent a real system. By adding this caveat, simulationists have inserted some hope

that a model is capable of being classi�ed as valid for a particular application, even though any

model they create will only at best be a less than perfect representation of reality. With the insertion

of this clause, the issue of validation takes on a completely new meaning. No longer is the issue

of absolute validity the problem, the problem is now proving the relative validity of a simulation

model with respect to some set of objectives.

In order to address this new problem, many articles have been published which provide a di�erent

perspective of this relative validity problem. One of these perspectives is to attempt to evaluate

the relative validity of the simulation by treating it not as a representation of a model/theory but

as a miniature scienti�c theory by itself and then use the principles from the philosophy of science

to aid in proving/disproving its validity [42, 43]. As �rst introduced by Naylor and Finger in 1967

[60], many authors have since thoroughly examined the many beliefs that have emerged from the

philosophy of science and have related them to simulation validity [10, 22, 41, 42, 63, 70]. Often

these authors provide insightful views into simulation validation because the philosophy of science

has been actively discussing the validity of theories long before the inception of simulation [42].
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Although the introduction of scienti�c philosophy has certainly provided new perspectives and

points of view on the subject of validity to simulationists [42, 70], it could be said that overall

the philosophy of science has brought with it more questions than answers. There are several key

reasons for this. The �rst is that for every belief system in the philosophy of science there are both

advantages and disadvantages. For example, often simulation validation is favorably compared to

Falsi�cationism because it states that a simulation can only be proved false and that in order to

have a simulation be considered scienti�c it must �rst undergo scrutiny to attempt to prove that

it is false [41]. However, under this belief system it is di�cult to determine whether a model

was rejected based on testing and hypothesis errors or whether the model is actually false [40].

Another reason of concern for using the philosophy of science is that, as was discussed earlier,

it is impossible to prove that a model/theory is valid at all. Therefore, using the philosophy of

science to aid in simulation validity is more applicable in providing insights into the fundamental

philosophical questions stemming from validation as well as potential validation frameworks than

in actually proving the validity of a simulation.

Besides this high-level look at the validation of simulation as miniature theories, another per-

spective considers methods and procedures which can aid simulationists in proving the relative

validity of their simulation given the assumption that it can be proven. This assumption is by no

means a radical one. It makes sense that if one de�nes the objective of the simulation to include the

fact that it cannot completely represent the real system then it is possible for a simulation to meet

the needs of a well de�ned objective and therefore have relative validity. With a goal in mind to

�nd these methods and procedures, a plethora of techniques have been developed as well as when

and how they should be applied within systematic frameworks to aid simulationists in validating

their models [7, 68]. As another indication of how much this �eld has been explored, even the

idea of validation itself has been reduced to many di�erent types of validation such as replicative,

predictive, structural, and operational validity [21, 88].

Clearly a lot of e�ort has been spent on summarizing and de�ning how one can go about validat-

ing a simulation given some objectives. It would be redundant to discuss all of them here in detail.
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However, to better understand what simulation validation means in practice it is worthwhile to

consider what all of these techniques and ideas have in common. Whether the validation technique

is quantitative, pseudo-quantitative, or qualitative, each technique has it's advantages, disadvan-

tages, and is subjective to the evaluator. Although the statement that all of these techniques are

subjective may seem surprising, it can actually be easily shown for all the validation techniques

developed today. For example, when qualitatively/pseudo-quantitatively comparing the behavior of

the simulation and the real system, it is clear that a di�erent evaluator may have a di�erent belief

about whether the behaviors of the two systems are close enough such that the simulation could

be considered valid. For a quantitative example consider when statistically comparing two systems

and the evaluator is required to subjectively select a certain level of signi�cance for the particular

hypothesis test used. For those familiar with statistical hypothesis testing, it is clear that di�erent

levels of signi�cance may result in di�erent conclusions regarding the validity of the simulation.

From these examples, it can be seen that even though many techniques have been developed, none

of them can serve as a de�native method for validating a simulation. They are all subjective to the

evaluator.

Given there is no technique which can prove that the relative validity of a simulation is true,

the fundamental question of this section resurfaces: what does simulation validation really mean

in practice? It has already been seen that in practice simulationists are not trying to validate

that a simulation is a representation of a real system and instead are attempting to validate the

simulation according to some objective, which also cannot be systematically proven to be true.

Therefore, one must consider other alternatives when examining what is really occuring when a

simulationist is trying to validate their model according to some objective. From the vast amount

of techniques, guides, and systems proposed to validate a simulation, it can be conjectured that

simulation validation in practice is really the process of persuading the evaluators to believe that

the simulation is valid with respect to the objective. In other words, in practice whether a simulation

is validated by the evaluators depends upon how well the simulationist can `sell' the simulation's

validity by using the appropriate validation techniques that best appeals to the evaluator's sense of

31



accuracy and correctness.

The idea that simulation validation in practice is really the process of selling the simulation to

the evaluator may not appeal to scientists, engineers, and simulationists, but there is a fair amount

of evidence which supports this conclusion. First of all, any simulation book or article focused on

validation will frequently stress the importance of knowing the evaluator's expectations and getting

the evaluator to buy into the credibility of the simulation [9], some will even go as far as to say

explicitly that one must sell the simulation to the evaluator [51]. Others go on to say that validating a

simulation is similar to getting a judicial court system to believe in the validity of the simulation [22].

Therefore, it can be concluded that generally those practicing simulation understand that validation

is more about getting the evaluators to believe in the simulation's validity and less about getting

a truly valid simulation, which has been shown to be impossible anyway. From this statement,

an interesting insight can be made into the nature of simulation validation in practice that until

recently has not been extensively covered or thought to be of much importance. This insight is

that simulation validation is not completely removed from society and other social in�uences. In

fact, it appears that simulation validation in practice requires the simulationist to have the ability

to actively interact with the community of evaluators and attempt to pursuade that community

to accept the simulation as correct. As a result, some have argued that simulation validation in

practice is similar to how any social group makes a decision [63].

In trying to determine what simulation validation really means in practice, several fundamental

points have been made:

• In practice, a simulation is validated based on some objective and not on being a true repre-

sentation of the real system;

• All of the techniques developed to prove the validity of a simulation in practice are subjective to

the evaluator and therefore cannot systematically prove the relative validity of the simulation;

and

• Validating a simulation in practice depends upon how well the simulationist sells the valid-
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ity of the simulation by using the appropriate validation techniques that best appeals to the

evaluator's sense of accuracy and correctness. Furthermore, this means that simulation vali-

dation in practice is susceptible to the social in�uences permeating the society within which

the simulation exists.

Given the above conclusions, it can be seen that simulation validation in practice really seems to

have little to do with actual validation, where validation is the process of ensuring that a simula-

tion accurately represent reality. Instead, simulation validation in practice is more concerned with

getting approval from evaluators and peers of a community relative to some overall objective for

the simulation. In other words, simlation validation in practice is really the process of getting the

simulation sanctioned [82], not validated. As a result, perhaps it is time for simulationists to con-

sider adopting the term simulation sanctioning instead of simulation validation since sanctioning

implies a better sense of what is actually occuring and validation implies that the truth is actually

being conveyed in the simulation when it is not. However, it is unlikely that this transition will

occur given the fact that simulation validation today is mainly concerned with getting evaluators

to buy into the results of the simulation, the current paradigm in simulation has been established,

and saying a simulation is valid sounds much better to a seller than does saying a simulation is

sanctioned. This brings up an interesting dilemma for simulationists because if simulations cannot

represent reality, then what good are they?

2.3 What Good are Simulations?

Since simulations in practice are sanctioned and not validated, the next logical question to ask is

if simulations are incapable of representing reality and therefore are incapable of providing true

results with respect to the system, then what good are simulations? To answer this question,

it is �rst important to jump out of the world of logic and philosophy and see that practically

speaking simulation would not be growing in popularity if it did not provide some demonstratable

good to those using the technique. In fact, it could be said that the continuing widespread use of

simulation in practice, the number of commercial simulation software packages, and the number of
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academic publications meaning simulation are clear indications that simulation has provided enough

robustness to be considered useful and indeed successful [48].

At �rst glance, the success of simulation in practice may appear to be an contradiction to the

previous statement that all simulations are invalid. However, this is resolved by making clear that

all simulations are invalid with respect to an absolute real system, which does not mean that a

simulation is not capable at some abstraction level to get relatively `close' to representing a small

portion of an absolute real system. For example, a simulation of a manufacturing system may come

very close to representing the outcome of a process, but nevertheless it is still invalid with respect

to actual system because of all the reasons discussed earlier. This same conclusion can also be

related to purely scienti�c theories, such as Newton's laws of motion. Although they can produce

reliable results in certain abstraction levels, overall they have been shown to not be completely

correct representations of reality. Given the popularity of simulation it appears that in spite of the

fact that they are not capable of representing an absolute real system, simulations are capable of

getting close and robust enough results to become practically useful [44, 47]. Simulations are useful

because they are capable of providing reliable results without needing to be a true representation of

a real system [86]. However, this is often more true for some types of simulations and real systems

than others.

In general, it can be said that the success of a simulation at obtaining reliable and predictable

results is dependent upon how well the real system is understood and studied, because a well un-

derstood system will result in better underlying theories that form the foundation of the simulation.

When a simulation is used to represent a well understood system, the reason for using the simu-

lation is not solety to try to understand how the real system may operate but instead is to take

advantage of the processing power and memory of the computer as a computational device. In this

role, the simulation is likely to produce reliable results because it is simply being used to express

the calculations that result from a well-established theory. A typical example of this can be found

in a standard queuing simulation. Since queues have been extensively studied and well-established

laws have been developed [38], it would be likely that a sanctioned simulation of a queue would
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be capable of producing reliable results and predictions because the simulation's role is to simply

be a calculator and data storage device. For these types of well understood systems, simulation

can provide predictive power. However, as less is known about the system, the likelihood that the

simulation will provide reliable data decreases to the point where the usefulness of the simulation

takes on a new meaning.

As less is understood about the real system, a simulation takes on a new role of becoming a

research instrument acting as a mediator between theory and the real system [58], because the

theories about the real system are not developed enough to truly provide reliable predictions about

future states of that system. One can think of a simulation in this case as being a research tool in the

same sense that a microscope is a research tool [46]. While the microscope can provide insight into

the real system, it does not directly re�ect the nature of the real system and cannot directly provide

reliable predictions about the real system. Instead the microscope is only capable of providing a

two-dimensional image of a dynamic three-dimensional real system. However, the microscope is

capable of mediating between existing theories about the real system and the real system itself.

Experiments can be designed and hypotheses can be tested based on information gained from the

microscope. In this same way, a mediating simulation is capable of providing insight into the real

system and the theory on which it was built without being a completely valid representation of

that real system. Although only formally recognized recently [58], the idea that computers can be

used to facilitate experiments and mediate between reality and theory has existed for a relatively

long time. In the early years of computing, John von Neumann and Stanislaw Ulam espoused the

heuristic use of the computer, which is an alteration of the scienti�c method to replace real system

experimentation with experiments performed within a computer [77].

An interesting aspect of mediating simulations, which is valuable to consider, is the apparent

interplay between the simulation and the real system. Just as a microscope started o� as a relatively

crude research tool that only provided a limited view of the real system and with time was improved

to provide continuously deeper understandings of the real system, so too can a simulation of a

real system be improved to gain better insights into that real system [84]. Furthermore, as the
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real system is better understood, so can the simulation of that real system be improved which in

turn can allow new insights to be gained about the real system. Examples of this mediating role

of simulation can be seen in many di�erent �elds. One such example can be found in the �eld of

nanotechnology where without computer simulations to aid in the complex and di�cult experiments,

certain advances in nanotechnology would not be possible [39]. Another example can be found in

any complex production system, where the simulation provides insights into how the real system

might behave under di�erent circumstances. In the world of Agent-Based Modeling, �toy models�

such as ISAAC (Irreducible Semi-Autonomous Adaptive Combat) have been used as to explore and

potentially exploit behavior that emerges in battle�eld scenarios [37]. A �nal example can be seen

in the �eld of physics where some �think of sciences as a stool with three legs - theory, simulation,

and experimentation - each helping us to understand and interpret the others� [50].

It may seem odd to conduct an experiment using a computer simulation of a real system when

the real system would seem to be the only way to guarantee that the conclusions obtained were

impacted by the real system and not an error built into the simulation. However, since a real system

is in�nite in nature it makes error a natural aspect of any �nite experiment conducted on that real

system. For example, attempting to measure the impact di�erent soils have on the growing rate of

a plant will always have variation and error simply because the experimenter is trying to conduct a

�nite experiment and make �nite measurements on an in�nite system. Therefore, error will always

be present in experiments, regardless of whether they are done on the real system or a simulation

of the real system [84]. A huge di�erence is that simulation errors are largely repeatable giving

the researcher greater control for potential insight into the real system. Nevertheless, this does not

mean that the simulation should be not properly sanctioned prior to being used to facilitate an

experiment. In order for a simulation to be a mediator in this sense, the simulation must contain

some sort representation of the real system and be sanctioned by the evaluators, otherwise the

results produced may not be reliable enough to provide any insight.

As the relationship between the real system, the theory, and the simulation begins to blur

together into non-distinct parts due to the lack of knowledge about the real system, what is meant
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by a simulation representing some part of reality also begins to become hazy. The more traditional

belief is that for simulations to represent some aspect of a real system they should have at least some

structural resemblance to the real system. However, even a simulation of a real system that is very

well understood has been shown to contain many built-in assumptions and falsi�cations which do

not match what is known about the structural aspects of the real system. This becomes especially

true for simulations when not much is known about the real system because how can a simulation

be a structural representation of a real system when the structure of the real system is not fully

understood? This �aw of structural representation perhaps has led to one of the current paradigms

in simulation where the performance of a simulation, i.e. how well the simulation translates realistic

input into realistic output, and not accuracy is the fundamental benchmark in determining the

usefulness of that simulation [44, 46]. Indeed, many of the technical validation techniques proposed

today emphasize the use of this realistic output or black-box paradigm [6, 9, 51, 68].

In general, this shift away from white-box evaluation (structural representation) and towards

black-box evaluation (output is all that matters) [13] can lead to several interesting conclusions. The

�rst is that this shift indicates the general acceptance of the idea found in Simon's The Sciences of

the Arti�cial. Essentially, Simon argues that arti�cial systems (ones man-made such as simulations)

are useful because it is not necessary to understand the complete inner workings of a real system due

to the fact that there are many possible inner workings of an arti�cial system that could produce

the same or similar results [73]. One way to think about this is to consider whether the di�erences

between the inner workings of a digital clock and an analog clock really matter if they both provide

the corrent time. Clearly, someone interested in knowing the correct time would be able to gain

the same amount of information from either clock even though both clocks are structurally very

di�erent. This fundamental aspect that di�erent structures are capable of producing the same

or similar results should not be a complete surprise; it has already been discussed that there are

potentially an in�nite number of possible models which can represent a single abstraction of a

real system. Another conclusion that can be drawn by the shift towards black-box evaluation is

that simulations are beginning to catch up and pass the theoretical understanding of the systems
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that they are being built to represent. The question now becomes, what possible usefulness can a

simulation be when little to nothing is known about the underlying principles of the real system of

interest?

At �rst glance, the usefulness of a simulation for a system that is not well-understood appears

to be nonexistent, because there is clearly nothing from which to build the simulation. But it is

from this lack of underlying theory and understanding of the real system that the usefulness of

this type of simulation becomes evident. Consider what a simulationist would encounter if asked

to build a simulation of a poorly understood system. The �rst steps they would probably take,

besides trying to understand the evaluators, would be to observe the system and, upon observing

the system, the simulationist would then attempt to generate the same behavior observed from the

real system within the simulation. This ability of a simulation to act as a medium in which new

theories about a real system can be generated points to the third role of simulation, which is that

of a theory or knowledge generator. Although certianly not a traditional means, using a simulation

as a medium to generate new theories and ideas about the real system is no di�erent in any way

from using pencil and paper or simply developing mental simulations about the real system [2].

One could observe a system and attempt to test the implications of a theory by using pencil and

paper or develop elaborate thought experiments as those made famous by Einstein just as easily

as one could use a simulation to test whether a theory is capable of representing the real system.

Examples of simulations being used for this role abound in the new simulation paradigm of Agent-

Based Modeling (ABM), where simulationists are typically trying to understand problems that are

di�cult for us to grasp due to the large amount of dispersed information and the high number of

interactions that occur in these systems (more about the special case that ABM simulations present

to the world of simulation will be discussed in detail in the next section) [20, 56, 61].

There are several clear advantages for using simulations as generators, the most important of

which is the ability of a simulation to create `dirty' theories of systems where the simplicity of

the real system eludes our grasp. Typically, scienti�c theories are often idealized for a particular

case and do not allow for much deviations from these idealizations. It could be thought that
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Figure 2: Di�erent Roles of a Simulation

these idealizations are partly the result or desire humans have to make simpli�cations and elegant

equations to represent the complex world we live in. However, simulations allow a theorisist to build

a representation of a system within a simulation that is capable of having many non-elegant aspects,

such as ad-hoc tinkering, engineering, and the addition of logic controls such as if-then statements

[47, 85]. As a result of this �exibility, it could be predicted that as more problems venture into the

realm of Organized Complexity (medium number of variables that organize into a highly interrelated

organic whole) [79] that the use of simulation to generate new `dirty' theories about the real system

will be needed because these systems are irreducible and typically hard to understand to the point

that often simulationists are surprised about the results obtained from these systems [15].

By using simulations as theory generators, simulationists can attempt to generate a potential

theory that explains the phenomena observed in the real system, just as a more traditional scientist

would do but without the simulation medium. Therefore, there are no apparent implications of using

a simulation as a generator to the philosophy of science [25]. As a result, those using simulations

in this manner should perhaps not consider themselves as disconnected from science because they

are an engineer or computer programmer by trade, but perhaps should attempt to ascribe to the

practices, rigor, and roles taken on by scientists to make true progress in the practitioner's �eld of

interest. Furthermore, as simulationists and scientists continue to push the limits of simulations

beyond that of the current knowledge of some system of interest, it can be seen why some researchers

are considering simulation to be the epistemological engine of our time [36].
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Despite the inability of a simulation to completely represent some abstraction of reality, sim-

ulation has still proven to be useful in several di�erent ways. By making the connection between

the level of understanding known about the real system and the simulation, a clearer picture can

be rendered about what simulation is capable of as well as where it �ts into today's scienti�c and

engineering endeavors. This continuous relationship, as shown in Figure 2, shows that when much

is known about the system, the simulation tends to take on more of a predictor role, similar to

that of a calculator. As less is known about the real system, the simulation begins to take on

the role of being a mediator between the system and the theory, much like the role a microscope

plays a mediator between microscopic systems and the understanding of those systems. Finally, as

the understanding of the system approaches almost nothing, the simulation can act as a generator

of potential theories about the nature of the system. Although some of the implications of using

simulations as generators have been discussed, it would be valuable to further breakdown the use

of simulations as generators in order to better understand their relation to other simultions, the

limitations they present, and to evaluate what might be lacking due the fact that the use of simula-

tion in this manner is relatively new. Since ABM directly �ts into this catagory, the deeper issues

involved with generator simulations will be discussed in the next section from the ABM perspective.

2.4 What Good is ABM?

Despite the fact that any simulation paradigm could potentially be used as a generator, probably

the most popular one used today is ABM. Emerging from Cellular Automata, Cybernetics, Chaos,

Complexity, and Complex Adaptive Systems, ABM is used today to understand and explore com-

plex, nonlinear systems where typically independent and autonomous entities interact together to

form a new emergent whole <insert reference to previous article if needed>. An example of such a

system can be observed by the �ocking behavior of birds [52]. Although each bird is independent,

somehow they interact together to form a �ock, and seemingly without any leading entity, manage

to stay in tight formations. With this in mind, simulationists using ABM attempt to discover the

rules embedded in these individual entities that could lead to the emergent behavior and eventually

attempt to make inferences about future states of these systems based on the simulations they de-
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veloped. It can be clearly seen that ABM is indeed used as generators of hypotheses for these type

of complex systems.

As may be expected, theories generated by ABM have many of the same problems encountered

by more traditional methods of generating scienti�c theories. As discussed earlier, such fundamental

problems include whether the truth of a system be known and what methods can be used to sanction

these theories. Although the issue of truth will always remain for any scienti�c theory, when it comes

to the methods needed to sanction ABM it appears that several new problems begin, at least in

terms of simulation, to emerge. These problems typically come from the fact that currently ABM is

used to investigate problems where no micro level theory exists (it is not known how the individual

entities operate) and where it is often very di�cult to measure and collect macro level data (the

emergent behavior) from a real system and compare it to the data generated from the simulation

[8, 52, 56, 61]. Ultimately, this current characteristic of these complex problems means that the

current traditional and accepted quantitative sanctioning techniques which promote risk avoidance

based on performance and comparing outputs are not applicable [71], since too little is known about

these systems. From this statement, several interesting conclusions can be made about ABM and

generator simulations.

The �rst is that because ABM is relatively new as a paradigm, either accepted techniques to

sanction these simulations have not yet been created to match the current sanctioning paradigm or

a new sanctioning paradigm with new sanctioning techniques is needed for generator simulations.

In order for the �rst statement to be the case, the underlying theory behind the real system being

studied by these generator simulations would need to be known to the point that the simulation

would no longer be a generator but instead be a predictor; the current sanctioning paradigm has

a majority of its interest is predictability and in turn has created sanctioning techniques that are

mainly focused on this paradigm. Therefore, it is impossible for generator and ABM simulations

by their nature to �t into the current predictive sanctioning paradigm. Furthermore, if a ABM

simulation ever became predictable it would no longer be a generator simulation and traditional

quantitative sanctioning techniques could be used. As a result, simulationists using ABM today as
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a generator should not be focused on meeting current predictive sanctioning paradigms, but should

shift their focus to creating a new generator sanctioning paradigm and the development of new

techniques to match. Attempting to create this new sanctioning paradigm will certainly not be an

easy task, but it is absolutely necessary if ABM simulations as generators are to become acceptable

for what they are: generators of hypotheses about complex systems. Only after this paradigm has

been created can both simulationists and evaluators come to a �rm conclusion about whether a

generator simulation should be sanctioned as a scienti�c research tool or an engineering alternative

analysis tool.

Although the overall lack of micro level theory for these types of problems may push the current

limits of today's simulation sanctioning for ABM, it should by no means be seen as a completely new

problem. For almost every simulation the simulationist must make some assumption or build some

theory about how the system works in order for the overall simulation to function appropriately.

What ABM and generator simulations really do is take this engineering and ad-hoc notion to the

extreme. As a result, it can be seen why that this departure from the engineering `norm' in the world

of simulation could produce a fair amount of skeptics. In fact, even von Neumann was skeptical

about using a computer in this manner, even though he recognized the practical usefulness of this

approach [47]. However, this type of skepticism is to be expected whenever pushing the limits of any

paradigm accepted by a community [63]. Overall, what is needed to gain acceptance of generator

simulations and a new sanctioning paradigm will be time and compelling evidence that eventually

these ad-hoc simulations will move up the continuum of understanding about the real system such

that they become mediators and then predictors.

Until the complex systems simulated by ABM are well understood, ABM simulations should be

viewed practically for what they provide as strictly generator simulations. This means that ABM

simulation should be viewed currently as a research tool, which is not only capable of providing

insight into the real system but also points to what needs to be understood about the real system in

order for a theory to be developed that can predict some aspect of the real system [8]. In order to

know that the knowledge gained from ABM simulations is reliable, a new sanctioning paradigm is
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needed that is not based on predictability because it is impossible for the systems being studied with

a generator simulation to be strictly predictable. Instead, this new sanctioning paradigm should be

based on precision and understanding as it relates to the more traditional methods employed by

scientists [71]. Furthermore, as this new sanctioning paradigm expands, new sanctioning techniques

can be created which provide value to the generator simulationist such that the real system is

understood to the point that generator simulation paradigms such as ABM can become mediator

or predictor simulations.

2.5 Section Concluding Remarks

As simulation continues to grow in popularity in scienti�c and engineering communities, it is in-

valuable to re�ect upon the theories and issues that serve as the foundation for simulation as it is

known today. With this in mind, this article attempted to add context and reconcile the practices

of simulation with the theory of simulation. In particular, this article took fundamental philoso-

phy of science issues related to simulation sanctioning and built a framework describing the crucial

relationships that exist between simulation as a medium and real systems. The �rst relationship

discussed is a simulation's inability to represent a complete abstraction of that real system. As a

result, all simulations are invalid with respect to a complete real system. From this conclusion, the

current practice of simulation validation was investigated to gain insights into what simulation vali-

dation really means. Despite the attempts of simulationists today, simulation validation really boils

down to selling the simulation correctness to the evaluators of the simulation, since it is impossible

to prove that a simulation is valid. With this in mind, it has been suggested that simulations are

not really validated in practice but are instead sanctioned. In turn, this inability of a simulation to

be validated brings into question the usefulness of simulations in general.

However, a simulation does not need to be a complete representation of some aspect of a real

system to be useful. Therefore a general framework was developed that related the role of simulation

based upon the level of understanding of the real system of interest. In this continuous framework,

a simulation can take on the role of generator, mediator, or predictor as the level of understanding

increases with regards to the real system. From this framework a clear set of expectations for
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a simulation can be distinguished based upon the level of understanding about the real system.

Furthermore, it is hoped that this framework can further provide a base onto which new techniques

and perceptions of a simulation's usefulness can be developed. Ultimately, this relationship shows

partly why today simulation is becoming the research and knowledge generating tool of choice. The

epitome of this new use of simulation as a generator and research tool has emerged in the form of

ABM, because ABM aids in the understanding of complex, nonlinear systems. However, because

ABM is relatively new to simulation, the current practices developed to sanction simulations that are

focused on predictive performances are not applicable. Therefore, simulationists using ABM should

develop a new sanctioning paradigm for generator simulations that is focused on understanding

and accuracy. With a new sanctioning paradigm, evaluators and simulationists can have better

expectations of ABM and other generator simulations as a research tools that point to what is needed

and what is possible. In the context of this framework and that as ABM improves the understanding

of complex systems, perhaps eventually the level of understanding will increase concerning the real

system and in turn allow ABM to take on the role of mediator or predictor.

3 Case Study and Developmental Methodology

During World War II (WWII), the Germans were the �rst to e�ectively use the submarine against

non-military targets, speci�cally against the logistical forces supporting the Allied war e�ort. U-

boats (from the German word for submarine, Unterseeboote) were, in fact, used primarily to sink

Allied merchant ships crossing the Atlantic Ocean to re-supply the Allied forces in Europe.

From 1941 through 1944, U-boats operated out of captured ports on the western coast of France.

From these ports, the U-boats transited the Bay of Biscay to the Atlantic where they hunted the con-

voy targets. The Bay of Biscay is bordered on the east by France, to the south by Spain and Portugal,

and in the north by Great Britain and Ireland (Figure 3, http://uboat.net/maps/biscay.htm ac-

cessed June 2008). In departing from and returning to their ports in France, the Bay provided the

only access route to the Atlantic.

The Allies concentrated their search e�orts in the Bay in o�ensive endeavor to counter the U-
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Figure 3: Map of Bay of Biscay with Locations of U-boat sinkings, 1942-1944

boat threat. The Bay, with a few exceptions, was the only feasible area to conduct U-boat hunting

operations. The open waters of the Atlantic were simply too vast providing ample area for U-boats

to navigate and hide. The German occupied ports in France were heavily defended and hardened

against bomber attacks. Additionally, German �ghter aircraft patrolled the skies over and around

the ports, deterring direct attacks against the ports or attacks against U-boats in the coastal waters

near France.

There were two exceptions to this search and counter policy: near the merchant convoys and at

U-boat re-supply points in the Atlantic. Escorting merchant convoys could only be accomplished

close to Britain, within the range of the Allied aircraft. This was not as e�ective as searching

the Bay because U-boat captains generally engaged in attacking the convoy ships in the Atlantic

before this escort point. The decryption of the German radio code, Enigma, by Allied intelligence

allowed aircraft to locate and patrol several U-boat resupply points in the Atlantic. but this was

not generally exploited to avoid leaking Allied knowledge of the Enigma decryption.

Although it was the primary feasible search area for the Allies, the Bay of Biscay still contained

roughly 130,000 square miles of potential search area. However, due to transit requirements, the
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U-boat density in the Bay was higher than in any other potential search area. Also, submersible

technology at the time did not enable submarines to stay underwater inde�nitely. U-boat engines

ran on two sources of power, diesel engines and batteries. Batteries only enabled the U-boat to

travel approximately 100 nautical miles underwater before it was forced to surface for nearly three

hours to recharge the batteries while operating under diesel power. As a consequence, U-boats were

forced to surface during their transit of the Bay. A surfaced U-boat was much easier to locate than

a submerged U-boat.

Between 1941 and 1944, Allied air forces vigorously patrolled the Bay. Early on, the �nding

and�killing� of a U-boat was an infrequent event; however, with the development and implementation

of new technologies such as radar, the Allied search forces became more adept at �nding and sinking

U-boats.

3.1 Campaign Issues

So what is the importance of the Bay of Biscay campaign? This con�ict between the Allied search

aircraft and the avoiding German U-boats is rich with strategic and tactical decisions on both

sides, driven predominantly by the state of technology and its progression. Additionally, the �eld

of operations research was born out of the Allied attempt at modeling the con�ict and optimizing

their search strategies. This campaign has been described as a technology Òsee-sawÓ or �tug-of-

war� [54]. Until the Germans began out�tting the U-boats with snorkels, allowing them to stay

underwater inde�nitely, the technological focus was on the Allied use of radar for searching and the

radar countermeasures employed by the U-boats.

The result of technology battles forced larger tactical and strategic issues on both sides. Since

U-boats could not transit the entire Bay submerged, their issue was when, and for how long, to

surface. U-boats traveled faster on the surface than underwater (average of 10 knots versus average

of 2.5 knots), and less time spent in the Bay meant more time to operate in the Atlantic. Increased

surface exposure, however, increased the risk of being detected and destroyed by Allied aircraft.

Traveling underwater reduced their vulnerability, but greatly increased the transit time. While

surfacing at night was usually safer, a strategy of only surfacing at night would allow Allied search
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e�orts to concentrate solely at night. Finally, the use of countermeasures in the form of search

receivers could give U-boats advance warning of approaching aircraft. The downside was that a side

e�ect from the use of these primitive search receivers was the broadcast of radio waves that Allied

aircraft could detect and track.

The Allied search forces were faced with similar issues: the time of day to search, where to search,

and how often to search a given area with a limited set of resources. There was a vast di�erence

in the e�ectiveness of day searching versus night searching. At one point in the campaign, it was

calculated that the probability of killing a sighted U-boat during the day was approximately 40%

while at night it was merely 11% [78]. If Allied search e�ort were restricted to day searches, when

Allied aircraft e�ectiveness was higher, the U-boats could capitalize by surfacing only at night. Such

were the game theoretic issues facing Allied decision makers during the war, and in particular this

aspect of the war. Such issues makes the Bay of Biscay quite amenable to ABM-based analyses.

3.2 Previous Analyses

The �rst analysis of the Bay of Biscay campaign was written in 1946 shortly after WWII, but not

cleared for publication until 1973. Waddington [78] details the e�orts of the Operational Research

Section (O.R.S.) of the Royal Air Force Coastal Command in countering the U-boat threat. He

describes how the O.R.S. engaged a wide variety of topics, from radar to navigation issues to

weather, altitude and attack methods, with a goal of demonstrating that Òscienti�c methods of

analysis might give useful assistance to e�ective executive actionÓ [78].

McCue [54], re-examines the analyses that were accomplished during WWII, and in some cases

completing them with modern techniques. He addresses a wide range of issues from the technology

Òsee-sawÓ, seasonal impact, and the concept of a balanced search e�ort. McCueÕs work shows that

Òone can quantify and analyze the campaign against the U-boats not merely by applying...Òindex

numbersÓ and Òcoe�cients based on sound military judgmentÓÉbut through mathematical rea-

soning systematically applied to knowable physical quantitiesÓ [54].
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3.3 So Why This Scenario?

The Bay of Biscay campaign is useful as an agent-based model for several reasons. First, the

amount of information available on the subject is immense. Besides the �rsthand account analysis of

Waddington and the later analysis of McCue, other sources, including Grand Admiral of Submarines

Karl DonitzÕs War Diary, are accessible. DonitzÕs source is valuable as it gives insight into

German U-boat strategies and tactics utilized in the Bay, as well as numbers for comparison. This

availability of information lends itself to the development of a detailed model, and is also useful for

the comparison of model results with historical results. Second, the technological developments, and

the tactical and strategic decisions necessitated by this campaign raise a lot of �what if?� questions.

These questions can be investigated by such a model with tradeo� analysis techniques. And �nally,

the model of a historical campaign like this, which is essentially a type of predator/prey model,

will easily transition to a variety of present-day scenarios for investigation. Such scenarios include

immigration, drug-running, smuggling, and terrorism, as well as some more traditional military

operations.

4 De�ning Some ABM Sanctioning Requirements

In the previous report, a high-level perspective was taken to better understand what simulation

validation really meant and what implications it has on simulation and in particular Agent-Based

Modeling (ABM) today. By examining the philosophy of science and current simulation practice

we conjectured that simulations cannot be validated with respect to a real system and therefore

simulations can only truly be validated subjectively by evaluators, a process we called sanctioning.

With this conclusion, the value of simulations were examined and a framework was developed that

described the usefulness of a simulation based upon the level of understanding of the real system

that the simulation is intended to mimic (see Figure 4). Based upon this framework, we concluded

an ABM mainly falls within the Generator Simulation category since they are typically used to

model complex systems that are currently not well understood. Furthermore, we concluded that new

sanctioning techniques are needed speci�cally geared towards ABM and other Generator Simulations
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Figure 4: Di�erent Roles of a Simulation

because current sanctioning paradigms do not match well with the abilities and usefulness of these

new types of simulations. It was further suggested that new sanctioning techniques are for ABM

and other Generator Simulations need to emphasize understanding and accuracy as opposed to the

common sanctioning techniques today that emphasize performance of the ABM.

Although analyzing simulation validation from a very high-level has yielded, among other things,

the call for sanctioning techniques for ABM that emphasize understanding and accuracy, this high-

level analysis does not provide detail when it comes to actually developing a new technique for

sanctioning ABM simulations. Therefore, we explored how simulation models are developed and how

they incorporate sanctioning techniques within the development process to gain insight into more

speci�c needs for a new sanctioning technique that emphasizes both understanding and accuracy.

4.1 How Models are Developed

We �rst conducted a literature survey on how researchers build simulation models. In general,

there exists a wide variety of step-by-step instructions, and associated �gures, that each individual

author proposes as a guide for the simulationist to create a good simulation. Some guides are fairly

linear in nature with iterative steps to ensure that the model meets the objectives of the project

and is properly sanctioned [9, 51]. Other guides are more complicated in structure because they

emphasize the need for continuous sanctioning and they attempt to convey the complex task that is

required if one wishes to build a good simulation model [7, 68]. Even though all of these simulation

development processes di�er, they contain similar fundamental elements of simulation building,
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Figure 5: A Simpli�ed Simulation Development Process

elements which can provide further insight into what the entire process of sanctioning Agent-Based

Models really entails. Based upon these similarities, a simpli�ed simulation development process is

shown in Figure 5. This simpli�ed process emphasizes the role that sanctioning (both conceptual

and operational) plays in simulation building.

The �rst step, as shown in Figure 5, is to formulate the problem and set the objectives to be

achieved by the simulation. In this step, arguably the most important step, the overall idea is

to determine that the simulation paradigm is a good �t for the problem, determine the proper

abstraction level for the simulation, and clearly de�ne the expectations of the simulation project.

The second step is to build the conceptual model. There is currently no clear and concise de�nition

of what exactly a conceptual model is [66]. A conceptual model can be described as �the process
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of abstracting a model from a real or proposed system� [66] and it is typically a mathematical,

logical, and/or verbal representation of the real system of interest [68]. A conceptual model is the

abstracted model intended to mimic the desired behaviors of the real system. This is often referred

to as the �art� portion of the model building process [9, 57]. This second step relies heavily upon

the known system theories driving the model development and the variety of assumptions required

in the model abstraction process. Sanctioning in this step is referred to as Conceptual Sanctioning.

Upon successfully sanctioning the conceptual model, the next part of building a simulation is to

translate the conceptual model into a computerized model. This is where veri�cation issues come

into consideration [7, 9, 51, 68]. Once the computerized model is veri�ed, the �nal step of this

process is to run the simulation and obtain results which can then be used to gain insights into

the real system. However, before the simulation can reasonably be used as a proxy of the real

system, it must �rst undergo another round of sanctioning we call Operational Sanctioning. For

the simulation to be operationally sanctioned, it's output behavior must su�ciently match the real

system's output behavior at the desired abstraction level and intended purpose [68]. Although this

simulation development process appears simple, it highlights the major steps involved in building a

good simulation.

4.2 Sanctioning Emphasis

Several key aspects about simulation building with respect to sanctioning arise by examining our

simulation development process. The �rst is that there are really two types of sanctioning processes

that occur during the building of any simulation. The second is that the two sanctioning processes

occur at very di�erent points in the simulation development process and as a result have very

di�erent objectives. While Conceptual Sanctioning occurs at the beginning of development process,

and is concerned with how well the conceptual model matches the theory and assumptions of how

the real system operates, Operational Sanctioning occurs at the end of the simulation building

process and is concerned with how well the output of the simulation matches the output of the real

system.

We compare Conceptual versus Operational Sanctioning with white-box versus black-box evalu-
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Figure 6: Relationship between System Understanding and Simulation Sanctioning Emphasis

ation, respectively. Both Conceptual Sanctioning and white-box evaluation place more emphasis on

understanding the details of how the system works while both Operational Sanctioning and black-

box evaluation place more emphasis on matching results (performance) rather than the internal

structure of the system. This comparison highlights where Conceptual and Operational Sanction-

ing �t into our simulation framework. If the major emphasis of a simulation study is on performance

(Operational Sanctioning), and not on understanding the theories of the system, then we assume

that the simulation is based upon a well understood system (otherwise the simulation study would

have failed the Conceptual Sanctioning phase). Conversely, if the emphasis of a simulation study

is on understanding the system (Conceptual Sanctioning) and not on how well the outputs match

reality, then we assume the simulation is based upon a less understood system and it is unlikely

that a simulation would be sanctioned based purely on performance when the entire simulation is

built upon a soft and assumption-laden conceptual model (this has been called the Base of Sand

Problem [18] in a military context). Based on this analysis, Figure 4 can be modi�ed to relate the

appropriate emphasis of sanctioning of a simulation based upon how much is understood about the

real system. This modi�ed framework is shown in Figure 6.

Although we assume the relationship between the level of understanding about the system

and the appropriate sanctioning emphasis, we must clarify an important point before proceeding

to the implications that this relationship has on developing a new sanctioning technique for the

ABM paradigm. Upon examining Figure 6, one may conclude that if little is understood about

the system then only Conceptual Sanctioning is required or if the system is highly understood
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then only Operational Sanctioning is required. However, this is not the case. Regardless of the

level of system understanding, any simulation should undergo both types of sanctioning to provide

reasonable con�dence in ABM results. Figure 6 helps to indicate which sanctioning type is most

crucial in the simulation development process.

To re-enforce this idea, consider the emphasis within a typical scienti�c article. Even though

the literature review will always be a crucial part of any article, the time spent critiquing and

testing past work depends upon how well the foundational issues concerning the system of interest

are generally understood. It is unlikely that a physicist using Newton's Laws for an experiment

will spend much time on the conceptual validity of Newton's Laws if they are already accepted as

applicable for the system, especially if the experimental results contributes to the �eld. As Hooker

states [35], and as extended to our case, emphasis should be to the degree dictated by the critically

of the ABM component. We next take this idea and examine the implications it has on developing

requirements for a new sanctioning technique for ABM.

The Figure 6 model implies that simulations of poorly understood systems require more Concep-

tual Sanctioning emphasis than they would require Operational Sanction emphasis. Furthermore,

it is our conjecture that most systems being simulated using the ABM paradigm are also not well

understood. Therefore, it appears that the natural sanctioning emphasis for the ABM community

is Conceptual Sanctioning. This further supports the earlier conclusion that Generator Simulations

need sanctioning techniques that emphasize understanding and accuracy. The next logical step in

the pursuit of a new sanctioning technique for ABM is to further explore the process of conceptual

modeling and what Conceptual Sanctioning techniques currently exist.

4.3 Conceptual Modeling

Despite the fact that conceptual modeling is probably one of the most important aspects of building

an e�ective simulation, there is actually little literature that speci�cally address how to build a

conceptual model [67, 66], particularly for ABM. There seems to be two main reasons for this. The

�rst reason is that the building of a conceptual model guidelines come in literature that discusses

how to generally build a model; a conceptual model is traditionally an assumed part of the model
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building process. While the actual model is the representation of a system's behavior, a conceptual

model de�nes what is going to be modeled and how it is going to be modeled. Therefore, although

there is often no direct discussion of conceptual modeling, there is a fair amount of literature

that discusses conceptual modeling, or at least the essence of conceptual modeling, as part of how

one should build a model [67]. However, these model building articles also touch on the second

point of why there are not many of articles discussing conceptual modeling; conceptual modeling

is more of an art than a science [9, 57, 67, 66]. Conceptual modeling cannot be detailed into a

step-by-step process that guarantees some particular result. Instead, all that can be o�ered to those

attempting to build a conceptual model are general guidelines, such as keeping things simple and

creating analogies to other developed structures [57]. Although more could be said about conceptual

modeling, the fundamental conclusions that can be drawn is that �conceptualizing a model requires

system knowledge, engineering judgment, and model-building tools� [64].

Examining the process of conceptual modeling reveals several important considerations for a

new ABM sanctioning technique: needing to understand and have system knowledge, engineering

judgment, and access to model-building tools. The next step is examining existing Conceptual

Sanctioning techniques.

In a 2005 article, Sargent identi�es two focuses that together encompass the idea of Concep-

tual Sanctioning [68]. The �rst part is ensuring that �the theories and assumptions underlying the

conceptual model are correct� by using mathematical analyzes and statistical methods as well as

ensuring that the theories are properly applied [68]. In other words, Sargent suggests using empirical

sanctioning techniques to ensure that all assumptions and theories of the conceptual model match

that of the real system. Thus, there are certain aspects of any conceptual model that are quanti-

tative in nature and therefore the more traditional Operational Sanctioning techniques focused on

quantitative sanctioning mentioned earlier can be used.

The next part of Conceptual Sanctioning is ensuring that �the model's representation of the

problem entity and the model's structure, logic, and mathematical and causal relationships are

`reasonable for the intended purpose of the model� which are primarily evaluated using face vali-
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dation and program traces [68]. Face validation and program traces involve subject matter experts

examine all of the logic of the conceptual model, typically via some �owchart or other graphical

device, in order to sanction the conceptual model. This means there is a qualitative aspect of Con-

ceptual Sanctioning that requires an expert to subjectively review the structure and logic of the

conceptual model.

To summarize, several key ideas regarding Conceptual Sanctioning and conceptual modeling

have been identi�ed. First, Conceptual Sanctioning should be emphasized when little is under-

stood about the system. Second, conceptual modeling is not a straightforward process but requires

system knowledge, engineering judgment, and model-building tools. Finally, Conceptual Sanction-

ing involves both quantitative evaluation and a qualitative evaluation, with each of these types

of evaluations having long-standing sanctioning techniques. An immediate question to consider

is why another technique or methodology is needed to sanction ABM when clearly one could use

pre-existing tools to sanction their conceptual model? To answer this question, we next explore the

kinds of systems the ABM paradigm are used to understand.

4.4 Systems for which the ABM Paradigm is Useful

From our previous work detailing the history and development of ABM, we found that the ABM

paradigm is a relatively new simulation paradigm that emerged out of need for a tool to aid in

understanding Organized Complexity Problems, or problems with a medium number of highly

interrelated variables causing the system to be highly nonlinear [79]. With these new types of

problems in mind, consider the following general conditions that make modeling a system easier

and in turn make developing a conceptual model easier [64]:

• Physical laws are available that pertain to the system;

• A pictorial or graphical representation can be made of the system; and

• The uncertainty in system inputs, components, and outputs is quanti�able.

Since Organized Complexity Problems are just now beginning to be explored in detail, we can see

why the ABM simulation paradigm needs a new sanctioning technique or methodology; every one
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of the above conditions does not currently hold universally. Although general progress is being

made in de�ning laws and theories governing Organized Complex Systems (such as found in the

�elds of Chaos, Cybernetics, and Complexity), these types of systems are not yet so well understood

that there are solid physical laws available from which to build a model. Since this is a new type

of problem, there are not many pictorial or graphical representations one can use to represent a

Organized Complex System. Attempting to use traditional two dimensional graphs with arcs and

nodes to represent nonlinear, complex, and highly interrelated states can get cumbersome, even

infeasible, and too often increases confusion and complexity, the opposite intention of having the

graphical representation [29, 30]. Attempting to quantify the uncertainty of inputs, components,

and outputs can be a challenging task simply because Organized Complex Systems are not well

understood, which is partly why the ABM simulation paradigm is being used in the �rst place.

Perhaps the real problem with ABM sanctioning is not with sanctioning, or the lack of sanctioning

techniques, but with the building of the conceptual model. Not having the tools or methods build

a conceptual model of these systems makes sanctioning of the entire simulation extremely di�cult

and can immediately bring into question how well the simulationist understands the system being

modeled.

4.5 Summary

What is needed to improve ABM sanctioning is a holistic methodology that incorporates the needs

of building a conceptual model of complex systems with the needs to conceptually sanction the

models. A methodology or tool is needed for ABM that aids in learning and conveying system

knowledge, incorporates proper engineering judgment, aids in translating the conceptual model into

a computerized model, easily displays theories and assumptions built into the model for quantitative

evaluation with the real system, and can easily display the conceptual model's logic and structure

in a graphical manner to subject matter experts of the system and not necessarily experts of ABM

or simulation for qualitative evaluation. We next evaluate current ABM sanctioning techniques as

well as other methods that aid in understanding complex systems to develop a basic methodology

or tool that can meet those requirements.
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5 General Observations of Current ABM Sanctioning Concepts

Once the requirements for a new ABM sanctioning methodology have been de�ned, it is impor-

tant to review current sanctioning techniques of these types of simulations to see where this new

methodology �ts into the current practice. In general, there are two main sanctioning focuses for

those currently building ABM simulations: model �tting and model testing (this terminology and

fundamental concept is borrowed from [75], however there is no direct correlation with Stasser's

de�nitions and the ones used in this report). For both of these focuses the ultimate goal is to have a

simulation that appropriately mimics the real system macro behavior because matching the macro

behavior indicates that the simulation could be operationally e�ective, however each focus has dif-

ferent ways to achieve this. In the model �tting focus, the parameters and theories that compose

the micro-level of the model are `optimized' via some algorithm. The optimization is not based on

observations from the real system. In essence, the micro-level portion of the model is systemati-

cally changed until the macro-level results are achieved. Conversely, in the model testing focus, the

parameters and theories that compose the micro-level of the model are based on observations and

experiments performed on the real system.

Even though these focuses are at opposite ends of the spectrum, and certainly hybrids of these

focuses exist, each extreme focus addresses the fundamental problem with ABM today; not much

is understood about the real system. Model testing directly attacks the lack of knowledge by

using the more traditional scienti�c method. Model �tting synthetically generates a feasible model

to produce the macro-level behavior. An advantage of using model �tting is potentially obtaining

novel micro-level theories about how the real world operates. However, an in�nite number of models

could represent a real system and thus it is impossible to prove that any model is an accurate

representation of the real system; in fact one can only disprove that a model does not represent the

real system of interest. Therefore, even if the model �tting focus results in a good representation of

the macro-level system behavior it does not mean that the model accurately re�ects the real system.

Instead, the simulation is only a proposed theory that needs to be thoroughly tested to determine

if it is feasible in reality, which means that model testing will still be required.
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If the simulation exhibits the intended macro level behavior then what does it matter if the

micro level behavior is correct? There are several examples that highlight why strict model �tting

without empirical evidence can be problematic. One example comes from professional car racing

where prior to the race crews can make adjustments to their car to attempt to optimize the car's

performance for that particular track. After considering the layout of the track, road conditions, and

after making several trial runs, suppose the crew out�ts their car such that maximum performance

is achieved during the race and the car ends up winning. As a result, for the next race that the crew

decides to use the same car adjustments because they would expect to see the same performance.

However, each track and race is di�erent. Thus using the same car adjustments may result in

poor performance for the next race. In the same way, adjusting a simulation until it matches

one particular performance measure from one particular real system may only be a good result

for that one real system. The problem here is ensuring that the extendability and robustness of

the simulation exists in order to explore and extrapolate implications of other real systems in the

same domain [9, 18, 51]. Having a micro-level model that is not properly sanctioned can ultimately

lead to unreliable simulation results beyond the particular performance measures obtained for that

particular real system modeled.

Another example to consider is a standard single server queuing model where the objective of

the simulation is to achieve the theoretical performance [38]. For example, typical performance

measures are the average time in the queue or system throughput. The standard approach to

build this simulation is to observe the real system, measure arrival rates, measure server processing

times, and then build a realistic representation of the system using some discrete event simulation

packages. We expect the simulation to behave like the real system. Another way to build this

simulation, utilizing a model �tting focus, is to create an ABM simulation with reproducing bugs.

In this simulation, the bugs move about their environment looking for food and reproduce with

other bugs, much like those of Sugarscape [20]. Key measures about the bugs, such as lifespan and

birthrate, are mapped to the goal performance measures of the single server queuing model. Then,

in the spirit of model �tting, parameters concerning the bugs and their environment are adjusted
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using some algorithm until the simulation's performance measures match the expected queuing

performance measures. The bug model is then deemed useful for queuing analysis. Although this

is an extreme example, we have no doubts that both of these approaches can meet the expected

theoretical performance measures. However, when it comes to sanctioning these techniques it is

clear that the ABM bug simulation does not really represent the real system and therefore it is

unlikely that anyone should sanction this simulation.

What emerges from analyzing these two sanctioning focuses is two conditional statements about

sanctioning ABM simulations. The �rst condition comes from model �tting: if the macro behavior

is sanctioned, then the micro behavior may be sanctionable. However, taking this approach requires

one to also ensure that the micro behavior is sanctionable or else the simulation as a whole may

not be sanctionable. The second condition comes from model testing: if the micro behavior is

sanctioned, then either the macro behavior will be generated by the simulation or the appropriate

micro behavior has not been captured by the simulation. This is a strong condition particularly

if macro behavior, sometimes referred to as emergent behavior, is unexpected and surprising by

de�nition.

ABM emergent and macro-level behavior is only really surprising or counter intuitive to us

because the way in which we can generate that behavior and not in the fact that the phenomena

exists in �rst place. Within the short history of ABM, the initial belief was that to generate complex

and emergent behaviors a complex model was required. The true surprise came when it was found

that very simple models could generate emergent behavior. Since this discovery, discussion of

emergent behavior has proliferated and has resulted in some terminology confusion [19]. However,

the idea of emergent behavior is not new and it can be observed in every scienti�c discipline in

the form of abstraction levels. For example, from atoms emerge molecules, from molecules emerge

cells, from cells emerge organisms, and etc. Therefore, the issue with our statement should not be

with the fact that emergent behavior is surprising, but with how we can say that the macro-level

behavior will appear when the appropriate micro-level behavior is included in the model.

We make this statement because micro-level behavior naturally leads to macro-level behavior. In
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any system, entities can be identi�ed that exhibit micro-level behavior that when examined together

create macro-level behavior. In fact, the fundamental di�erence between micro-level behavior and

macro-level behavior is the abstraction level of interest, even though both belong to the same

system. Every macro-level behavior is the result of some micro-level behavior in nature. If one

can appropriately mimic the micro-level behavior then the macro-level behavior will follow. Even

though emergent behavior appears unpredictable, it is not unexplainable [19]. Thus, each ABM

simulation study should begin by coming up with some statement similar to: we want to model

these entities and their interactions in this environment to get appropriate macro-level behavior.

While model �tting is a useful model generating tool, it is not a proper sanctioning technique

because it can generate one of the in�nite models that does not represent the real system. Model

testing should be the focus of any sanctioning technique because it emphasizes the need for the

model to represent some abstraction of reality. Furthermore, sanctioning should focus on the micro-

level behavior; having an the appropriate micro-level behavior helps to ensure that the complete

model is sanctionable. If only the macro-level behavior is sanctioned, then considerable e�ort is still

be required to ensure that the micro-level behavior is sanctionable. Up front, e�ort in micro-level

sanctioning pays o� in the long run as the complete model is sanctionable. If it turns out that the

macro-level behavior is not emerging from the micro-level behavior, then there is some fundamental

part of the puzzle missing from the micro-level model. This missing result will encourage designers to

further research the micro-level behaviors, which is more in line with the spirit behind the scienti�c

revolution. As pointed out in previous reports, simulations of less understood systems are becoming

scienti�c theories in themselves, so it is vitally important that they be based on some representation

of reality. Therefore, in order to represent that reality more emphasis needs to be on conceptual

modeling (micro-level) of these less understood systems.

A survey of literature regarding how ABM simulations are sanctioned today generally indicates

that the focus is on obtaining macro-level behaviors that match those of the real system. In other

words, the emphasis of sanctioning techniques for these simulations of less understood systems is

on Operational Sanctioning (macro-level) and not Conceptual Sanctioning (micro-level). This does
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not mean that simulationists are completely neglecting micro level sanctioning, it only means that

they tend to mention it in passing rather than making it the focus of their sanctioning e�orts.

For example, Epstein acknowledges the fact that many micro-level models can produce the desired

macro-level behavior and that empirical testing of the micro-level model needs to be conducted.

However, the general emphasis of Epstein's article is on how we can generate the macro-level be-

havior, in particular using Genetic Algorithms to generate the appropriate micro-level speci�cations

[19]. Midgley et al. also discusses using Genetic Algorithms in their ABM simulation to obtain the

desired macro-level behavior [55]. Moss and Edmond indicate that micro-level sanctioning needs to

be qualitatively evaluated, but then spend the majority of article discussing statistical techniques

to sanction the macro-level behavior [59]. Finally, Usher and Strawderman discuss the micro-level

behavior of a crowd movement model and then state that their simulation is sanctionable because

the macro behavior matches what is observed in real crowds [76].

Although there is some emphasis on the macro-level sanctioning over micro-level sanctioning,

even those articles that discuss techniques to obtain macro-level behavior by developing the micro-

level models emphasize achieving the macro behavior and not ensuring that the micro-level behavior

is correct. Windrum et al. discuss three techniques to `calibrate' a simulation [81]. In the �rst two

techniques, Indirect Calibration and Werker-Brenner Calibration, empirical knowledge about the

real system is used to help get the micro-level model close and then systematic adjustments are

made to the model to obtain the macro-level behavior. Again, obtaining the appropriate micro-

level behavior is not emphasized and instead the ultimate goal is to obtain the macro-level behavior

by adjusting the micro-level parameters accordingly. In their last approach, called History-Friendly,

the design of the micro-level behavior is based on empirical studies and historical data and the

simulation is sanctioned based on whether the output matches the real systems output. Ultimately,

this approach is probably the closest to having a focus on both micro and macro-level sanctioning,

even though the �nal test as to whether the simulation is sanctionable depends upon the macro-level

behavior and not on the micro-level behavior.

Micro-level sanctioning is not typically the emphasis of simulation. Macro-level behavior sanc-
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tioning is still the important player. Therefore, a new methodology or tool that emphasizes micro-

level sanctioning must address several fundamental issues with respect to ABM simulation sanc-

tioning. These issues stem from the fact that ABM simulations are scienti�c theories by themselves

that describe how micro-level behaviors creates macro-level behaviors.

As discussed in the previous validation report, simulations are beginning to become the episte-

mological engine of our time because they can be used to represent complex nonlinear systems and

show the implications of those systems. As an epistemological engine, simulations have become the

theories of the systems they are intended to mimic and therefore should be treated the same way

as other scienti�c theories. Up to this point, the issues related to ABM simulation sanctioning have

been discussed from the point of view of those developing the simulation, or in other words how

individuals develop the theory of how the system behaves. However, as with any scienti�c theory,

the theory must survive peer scrutiny and the theory must be reproducible. Regardless of how well

an ABM simulation is built, it must undergo peer evaluation for scienti�c progress to be made.

This conclusion that ABM simulations of real systems need to be independently peer evaluated

is not new. Several articles discuss the need for these simulations to be evaluated independently

[3, 5, 81]. Hindrances to independent peer sanctioning include ambiguity in published papers, gaps

in published descriptions or unclear descriptions, and technical di�culties related to simulation [3].

Apparently, since these theories, in simulation form, cannot be represented in simple equations or

descriptions, attempts to describe them completely in words in a journal paper is either impossible

or extremely di�cult. This should not be a surprise given di�culty representing the complex

nonlinearity of these systems and the fact that journals are probably not willing to publish an

article long enough to completely describe a simulation.

One natural solution to this problem is for the authors to provide their peers with access to their

simulation model; this, however, raises several issues. First of all obtaining a copy of the simulation

model may be di�cult due to proprietary issues. But even if the simulation is obtained, there are

many simulation languages and packages that the simulationist could have used. If the evaluator

is not familiar with the simulation language of the simulation, then understanding the simulation
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can be a problem. Even if the evaluator is familiar with the simulation language and can run the

simulation independently, the evaluator may be able answer the `how' questions of the simulation

but they still cannot e�ectively answer the `why' questions. For example, the evaluator knows how

an entity A behaves when it encounters an entity B, but the evaluator does not know why or with

what justi�cation entity A's behavior was de�ned.

To make a determination about a simulation, an evaluator must understand the micro-level

details of the simulation. This means the evaluator must have familiarity with simulation in addition

to system domain knowledge. The evaluator must be able to abstract their domain knowledge into

a simulation paradigm and be able to use this abstraction to understand the conceptual model for

the simulation under evaluation.

It is clear that another approach is needed for describing an ABM simulation. The approach

must provide information on such things as initial conditions, all logic associated with the micro-level

entities and justi�cation behind the logic, how the entities interact and the justi�cation, variables,

parameters, probability distributions, random number generators, and terminating conditions. The

tool should also emphasize the proper sanctioning required at the micro-level, aid in the develop-

ment of the conceptual model at the micro-level, be a description of the simulation model that

can be independently evaluated by experts of varied simulation experience levels, and be able to

provide both the hows and justi�cation of those hows at the computer programming level and at

the computer novice or domain expert level. Creating a description that meets all of these needs

and is still useful to the evaluator is a challenging task.

5.1 Understanding the Needs: How to Represent a Complex System

The following needs for a new ABM tool have been identi�ed:

1. Aids in learning and conveying system knowledge

2. Incorporates proper engineering judgment

3. Aids in translating the conceptual model into a computerized model

4. Emphasizes the development and sanctioning of the micro-level behaviors
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5. Displays the theories and assumptions built into the model for quantitative analysis

6. Conveys the conceptual model's logic and structure for qualitative analysis

7. Completely represents the simulation so it can be reproduced by independent evaluators

8. Provides justi�cation for all structures and actions in the simulation

9. Reviewable by evaluators of varied simulation and domain expertise levels

Re�ected in this set of needs are three reoccurring ideas. The �rst is the need to observe the

real system and create a conceptual model translatable into a simulation. The second is that the

sanctioning emphasis is on understanding the micro level behaviors of the system. Finally, the

third sanctioning by a variety of evaluators. A visual model of how a ABM simulation represents

a complex, nonlinear real system is one tool that has the appropriate capabilities to address all of

the above needs. In the follow paragraphs, some of these capabilities are discussed.

There are capabilities from the model aspect of the tool. Generally speaking, a model is a

representation and description of a real system. The visual model will be a representation of an

abstracted real system for the purpose of simulating that real system. The model will convey

information about the details of the simulation, information about the real system itself, and about

the conceptual model used to represent that real system. This model can thus be an independent

medium for evaluators to review the e�ectiveness of the simulation and also provide documentation

independent of a computer program.

Building a visual model forces the modeler to actively gain knowledge about the real system in

order to abstract system behaviors for the purposes of the study. Using a model as a tool aids the

simulationist in building a conceptual model while enforcing the simulationist to consider how the

model will be transformed into a simulation.

There are capabilities from the visual aspect of the new tool. A major hurdle for the simulationist

to overcome is conveying knowledge about how the real system operates and how the simulation

of the real system operates. Since humans are inherently visual and good visual aids can convey a
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wealth of information, an appropriately designed visual modeling tool can facilitate communicating

complex structures and any inter-relationships.

Finally there are capabilities from using a standardized visual model. Modeling methods need

a formalism and they need to convey speci�c knowledge. Model method standardization helps

to ensure the model provides enough knowledge for the simulation to be rebuilt (if necessary)

by independent evaluators, be formal enough to possibly translate into a simulation language,

and speci�c enough to ensure the micro-level behavior is both qualitatively and quantitatively

sanctionable.

To some extent every discipline uses models to aid in understanding. A good place to begin

examining visual-based modeling methods is in the �elds of software and system engineering because

they use many di�erent types of visual models [29, 45]. These �elds typically use Schematic or

Descriptive Models that attempt to represent a system process or element [45], which accurately

describes the kind of model we are looking for. However, a signi�cant number of visual models are not

capable of representing a complex, nonlinear system. Many visual models are good at describing the

linear �ow of information, but get increasingly confusing if the system has any interactions between

entities [29], which is a common theme in the ABM paradigm. This inability of many Schematic

Models to represent complex systems automatically eliminates many of the models found in systems

or software engineering such as ones found in the Uni�ed Modeling Language [11].

There are more recently developed models, such as Petri Nets [62] and Statecharts [29], that

are capable of e�ectively representing a complex system. Petri Nets have some trouble representing

hierarchies while Statecharts seem to easily convey a complex system's structure, relationships, and

hierarchies. Statecharts are based on state-diagrams and �constitute a visual formalism for describ-

ing states and transitions in a modular fashion, enabling clustering, orthogonality (i.e., concurrency)

and re�nement, and encouraging `zoom' capabilities for moving easily back and forth between levels

of abstraction� [29]. Statecharts provide many of the capabilities that are needed for a new ABM

modeling tool. In fact AnyLogic, a commercial ABM simulation language, has incorporated State-

charts into their language to describe the behavior of agents [12]. Thus, Statecharts appear formal
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enough to translate behaviors into computer executable logic.

Despite the many capabilities of Statecharts, there are some shortcomings. The �rst, as with

Schematic Models, Statecharts do a good job of describing how a process happens but does a poor

job describing why it is made to happen that way. Therefore, a way to convey the `whys' needs to be

incorporated into the Statechart Model. Statecharts may actually be too formal and detail-oriented.

While formalism and richness in detail are important, having an extremely formal and detail model

can be a hindrance. Too formal and detailed the model e�ort shifts emphasis away from building

a good simulation study and places it instead on building this abstract model. Furthermore, too

formal and complicated model may make understanding the key concepts of the model more di�cult.

Therefore, some simpli�cations of the Statechart Model are needed to avoid over formalization and

puts the emphasis on abstracting the real world system into micro-level behaviors that are achieved

within the simulation.

5.2 Prototype Design of the New ABM Tool: Theoretical System Simulation

Diagram

5.2.1 Fundamental Characteristics

A prototype design of a new ABM modeling tool was developed to have the appropriate capabilities

to meet the de�ned needs. This new ABM tool, the Theoretical System Simulation Diagram Proto-

type or TSSD Prototype, is based primarily on the structure of Statecharts because of their ability

to visually represent structures and relationships of complex systems [29]. However, the TSSD Pro-

totype only borrows the fundamental structural pieces from Statecharts for visual representation

purposes and does not incorporate many of the de�nitions that compose and de�ne a Statechart.

For example, the TSSD Prototype uses arcs to represent the movement from one block of activities

to another, but unlike Statecharts arcs, TSSD Prototype arcs do not determine when to transition

among blocks or states.

The TSSD Prototype also incorporates some of the basic shapes and properties of Flowcharts

for the purpose of simplifying and providing �exibility to those using the TSSD Prototype. For

example, within each block or state, there are a set of actions, interactions, or decisions shapes that
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de�ne the activities occurring when the modeled entity is in that block or state. Without requiring

the users to speci�cally de�ne events and the transitions to new states, the TSSD Prototype allows

a certain �exibility to rede�ne the activities without needing to completely build a new model.

Having simple shapes representing di�erent activities within a block allows evaluators or builders

to quickly determine what is occurring in that block without the need for the detailed logic of the

model. Incorporating these simple shapes allows users to spend more time focusing on behaviors

and activities and less time worrying about how best to design the logic of the computer simulation.

Even with these change, the TSSD Prototype remains formal or provides enough information to

translate the diagram into a simulation.

The TSSD Prototype incorporates visual aspects to aid the user in de�ning and understanding

the hierarchical structure, relationships, and activities that occur in each block or state. The TSSD

Prototype also incorporates a database of properties for each shape to provide details necessary

to properly sanction and build the simulation. For example, an Action shape has �ve properties

that de�ne it's relationship to other shapes, the behavior of the real system it is trying to mimic,

pseudo code to help to translate that real system behavior into a simulation, and a reference to

the source that describes that behavior occurring in the real system. With these properties, the

TSSD Prototype contains much of the `why' information that is often lacking in other modeling

techniques. This de�nes why the TSSD Prototype can be translated into a simulation and provide

enough information for evaluators to review the sanctionability of the simulation.

5.2.2 Basic TSSD Prototype Structure

There are �ve shapes that are used to construct the TSSD Prototype. The �rst shape is the Block,

visually represented as a rectangle, which de�nes a collection shapes. The Block is the fundamental

shape that describes the hierarchical relationship and structure of the system being simulated and

it can be used to describe that state of the system at any point in time. For example, a Block called

Environment could describe the collection of shapes that describe the environment within which the

agents in the real system operate. Activities or behaviors within a Block could be de�ned to occur

`synchronously' or `concurrently,' which is a fundamental property of Statecharts. Actions within a
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Block could de�ne the creation of more instances of Blocks. For example, in a Build Agents Block

there could be an action that says create 40 agents.

The TSSD Prototype has shapes to describe the micro-level behaviors that occur within the

model. The Action shape describes an activity that changes an entity or variable and is visually

represented with a block arrow. An example of an Action may be the consumption of food or

moving to a new location. A special case of the Action shape is called the Interaction Shape,

visually represented by a circle. The Interaction Shape de�nes the exchange of information between

agents. For example, an Interaction could be the communication of the location of an important

resource between two agents. There are a couple reasons for creating and highlighting the Interaction

shape. First, when evaluating or building an ABM simulation it is important to understand the

interactions that occur between agents; making it a special shape makes the identi�cation of this

behavior easier. Second, the interaction between agents within a simulation often requires special

programming attention; explicitly capturing this behavior can aid in translating the TSSD Prototype

into a simulation. The �nal shape that describes micro-level behavior is the Decision shape, visually

represented with a diamond. A Decision shape examines a set of conditions and determines whether

to transition to another block. For example, a Decision could be to transition from a Move Block

to a Stop Block if an obstacle in encountered by some moving agent.

The �nal shape used in the TSSD Prototype is the Information Shape, visually represented

with an horizontally elongated circle. The Information shape provides information referenced by

the Behavior Shapes. For example, an Information shape could represent the simulation clock that

a Decision shape references to see if the simulation should terminate. An Information shape could

represent the schedule by which Agents are created or destroyed. The Information shape is included

in the TSSD Prototype to convey key information that the simulationist does not want to represent

using Blocks, Actions, Decisions, and Interactions.

These shapes, also have speci�c properties. A Block shape has �ve properties. The From

property describes which blocks transition to it. The To property describes blocks that can transition

to it. The Decisions, Actions, and Interactions properties describe the respective shapes that are
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Table 3: TSSD Prototype Shape Descriptions

directly contained within the block. The fundamental properties of the Block shape describes its

relationships to other shapes.

The Behavior Shapes (Action, Decision, and Interaction) also have �ve properties that are

closely related to each other. The �rst property is the Member Of property, which describes the

direct block that the shape belongs to. The next property describes the activity being performed.

For the Action shape, the Impacts Decision property describes any Decision shape that is being

impacted by the action. For the Decision shape, the Transitions To property describes blocks that

can be transitioned to as a result of the decision. For the Interaction shape, the Interacts With

property describes the blocks or shapes that the interaction impacts. The �nal three properties for

the Behavior Shapes are exactly the same. The Behavior property describes a behavior of the real

system that the shape is attempting to mimic. The Pseudo Code property describes the pseudo

code intended to facilitate translating the behavior into the simulation. Finally, the Source property

is a reference to a source that provides the justi�cation for that behavior.

The �nal shape, the Information shape, has three properties; Member Of, Behavior, and Source.

Each of these properties are as previously de�ned for Behavior Shapes. A complete summary of

the shapes, their visual representation, properties, de�nition, and some examples are shown in

Table 3. Although the TSSD Prototype is still in the early stages of development, we believe that
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the fundamental shapes and the structure associated with Statecharts can e�ectively provide rich

descriptions of most ABM simulations. As a proof of concept, to further describe the functionality of

the TSSD Prototype, and to show TSSD Prototypes e�ectiveness at sanctioning, a TSSD Prototype

will be developed based on the Bay of Biscay ABM Simulation Scenario 1. Furthermore, a template

of the TSSD Prototype will be developed using Microsoft Visio 2007 that will have all of the TSSD

Prototype shapes and properties. These will be documented in the �nal deliverable.

5.3 Section Concluding Remarks

This portion of the research e�ort examined elements of ABM sanctioning particularly those ele-

ments of current practice that appear at odds with the requirements of viable ABM sanctioning

methods. An initial ABM developmental methodology was de�ned that focuses on providing sanc-

tionable ABMs. This methodology was culled from a broad examination of developmental methods

used for simulation in general and, if available, ABM in particularly. A key objective was to promote

sanctionability from both a micro-level and macro-level ABM behavior perspective.

The last portion of this research will focus on re-creating the Bay of Biscay ABM of [16]. Cham-

pagne used the past, historical record to de�ne the ABM. Veri�cation techniques were employed to

ensure the model was correctly built and macro-level validation e�orts were designed and exploited.

This research extends [16], and subsequent papers [32] and [31], by using the initial ABM devel-

opmental methodology developed in this research to de�ne, design and realize this Bay of Biscay

ABM.

6 Proof of Concept Case Study

As a proof of concept, to further describe the functionality of the TSSD prototype, and to show the

TSSD Prototypes e�ectiveness at sanctioning, the TSSD Prototype was used to build a simulation

that replicates Scenario 1 of the Bay of Biscay ABM Simulation as described by Champagne [16].

Earlier the basic rationale behind selecting this ABM Simulation to investigate with the TSSD

Prototype was provided. However, another primary reason for selecting this simulation was the

amount of available documentation. Because a signi�cant portion of his dissertation was spent

70



describing the Bay of Biscay ABM Simulation many aspects required to reproduce the simulation

are included. As discussed earlier, this amount of documentation is rarely provided for published

simulation projects. With these vast amount of details, we could more e�ectively develop the TSSD

Prototype as a proof of concept, describe the functionality of the prototype, more e�ectively show

the usefulness and application of the TSSD Prototype, and further improve the TSSD Prototype and

identify short comings. Ultimately, deciding to reproduce another simulation puts more emphasis

on the TSSD Prototype and less emphasis on creating an entirely new simulation.

A secondary reason for selecting this ABM Simulation was to have a more meaningful discussion

regarding the sanctionability of the reproduced ABM Simulation using the TSSD Prototype. In

his dissertation, Champagne provides both conceptual and operational benchmarks that can help

gauge the sanctionability of our ABM Simulation. For example, Champagne provides justi�cation

and documentation regarding the logic of how Aircraft searched for Uboats and how the Uboats

responded to the Aircraft. Using this documentation we can build a better conceptual model

and also make some claims about the sanctionability of our conceptual model. Also, Champagne

provides key operational measures such as Number of Sightings and Number of Kills that can be

used to operationally sanction our simulation. Being able to make these comparisons will further

support the e�ectiveness and justi�cation of the TSSD Prototype. It should be made clear that we

are not directly comparing our simulation with the real system, but with another well documented

and sanctioned simulation.

6.1 Scenario 1 of the Bay of Biscay ABM Simulation

In Champagne's Bay of Biscay ABM Simulation there are two scenarios that approximately corre-

spond to the developments that occurred in WWII. For simplicity we only replicated Scenario 1.

However, the changes presented in Scenario 2 could easily be incorporated in the TSSD Prototype

and the resulting ABM Simulation. In the next few paragraphs, a general description of Scenario 1

will be described as given in Champagne's Dissertation. For more detailed information see [16].

Scenario 1 takes place over the six month period from October 1942 to March 1943 and is

proceeded by a 12 month warm-up period where only the Uboats travel between the North Atlantic
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and French Ports. After the 12 month warm-up period the Aircraft take o� from England and

search for the Uboats in a 50 NM by 50 NM search area using the Modi�ed Barrier Search Pattern.

Altogether the Aircraft are randomly assigned to search 200 NM x 350 NM area that is not within

a 100 NM of the French coast. The Aircraft are schedule to take o� uniformly throughout a 24

hour period and must be at the base for a 12 hour period before taking o� again. Throughout the

simulation there are 19 Aircraft such that the number of sortie hours approximately correspond to

the historical number of sortie hours �own during that six month period. Aircraft travel at 120

knots and search for Uboats for 7 hours and then return to the base. If at anytime the Aircraft

detects a Uboat and �res, the Aircraft will immediately return to the base.

During this Scenario the Uboats observe the maximum submergence and nighttime surfacing

policy. Day is de�ned as the time between Nautical Dawn and Nautical Dusk and Night is the the

time between Nautical Dusk and Nautical Dawn. While on the surface the Uboats will scan for

Aircraft and upon detection will submerge until it is nighttime. On the surface the Uboats travel

at 10 knots and while submerged they travel at 2.5 knots. They can only travel 3 hours submerged

before they must surface to recharge their batteries if they wish to continue moving. For every hour

traveled on the surface, the batteries have one more hour of submerged travel time up to a total of

3 hours of submerged travel. When they are within a 100 NM of the French coast they will travel

on the surface because they will have German Aircraft support. During the warm up period the

70 Uboats are randomly distributed across the Bay of Biscay and are set to either head towards

their home port or the North Atlantic. Once the warm up period is over, at the beginning of each

month a scheduled number of Uboats enter the simulation at their home port and head toward the

North Atlantic. While in the North Atlantic the Uboats have 30 days worth of provisions and have

a 25% chance of extending their time in the North Atlantic by another 30 days. This models the

limited number of resupply ships employed by the Germans to keep the Uboats operational. Once

the Uboats reach their port they will uniformly depart again after 25 to 40 days.

For detection both the Aircraft and the Uboats used the Inverse Cube Law, which incorporates

the use of multiple sensors to create a positive probability of detection regardless of the distance
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away from the target. Although the sensors and their range was not directly provided by Cham-

pagne for the Aircraft and the Uboats, Champagne did reference [54, 78] which gave the breakdown

of the sensors. Based on those references, the sweep width and detection probability was calcu-

lated. Furthermore, when an Aircraft detects a Uboat it has a 0.02 probability of killing the Uboat

regardless of the time of day.

Although many details of the simulation that were given by Champagne are beyond what is

typically encountered in literature, there were still many aspects of his simulation that were not

completely clear. There are several reasons for this. First, Champagne primarily relies on written

descriptions to convey the logic and activities of the simulation. This means of communication can

be fairly confusing if the sentence is not worded in just the right way. For example, saying Uboats

submerge after detecting an Aircraft and then resurface at night could be interpreted several di�erent

ways. Do they resurface immediately if it is night time? Do they resurface after 3 hours and it is

still night time? Unless the written description is in a clear structure and formalism there can be

many misinterpretations of the logic. This problem with written descriptions further indicates that

some sort of formal description of the model needs to be established if someone is going to attempt

to reproduce a model or even interpret the model's sanctionability.

Closely related to the lack of formal description is that the written description provides no

structure forcing the author to describe all of the necessary details in order for others to reproduce

their work. After spending a signi�cant amount of time building a simulation it is likely that small,

yet critical, pieces of the simulation will be left out of written descriptions because they are assumed

by the simulationist. There are many examples in Champagne's work where we believe that this

occurred. For example, Champagne did not include critical information regarding the detailed

sensor data in his descriptions of the model. In this particular case we were able to �nd the sensor

data that we believe he used, however we cannot be 100% certain. It could be conjectured that if a

formal description was required, then some of these unintentional omissions would be averted.

Overall, the description of the simulation given in Champagne's Dissertation provided most

of the information needed in order to reproduce both the conceptual and operational aspects of
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the simulation. When we encountered something that was unclear we attempted to review any

references given for clari�cation, however if no reference were given we made reasonable assumptions

and recorded it as such in the TSSD Prototype that was developed.

6.2 Bay of Biscay TSSD Prototype Description

Based on Champagne's Dissertation, a TSSD Prototype was developed that serves as a medium

between the real world system and the simulation model. In essence, the TSSD Prototype is the

descriptive and de�nitional abstraction of the real system that serves as a translator between the

in�nitely complex real world and the �nitely de�ned simulation. The main objective of this section

is to describe the TSSD Prototype's functionality and further explain how the TSSD Prototype can

aid in building better simulation models.

Using Microsoft Visio 2007 a template of the fundamental shapes and their properties described

earlier was created. From this basic template the TSSD Prototype of the Bay of Biscay ABM

Simulation was built. Both the template �le and the TSSD Prototype �le of the Bay of Biscay

are included in this technical report for further examination beyond the brief descriptions provided

here. The reason for selecting Visio to develop the TSSD Prototype was the ease of use, the ability

to run reports to obtain the properties of all the shapes, and the general public knowledge of Visio.

Within the TSSD Prototype �le there are four di�erent sheets or views of the simulation. The

�rst view is the `Bay of Biscay Model' shown in Figure 7. This view shows the model level abstraction

of the simulation and includes initialization blocks and execution blocks. In this view the major

actions taken to initialize and run the simulation are shown. The second view called `Environment'

shows the the environment level of abstraction and can be seen in Figure 8. This includes the

Uboats and the Aircraft that exist in the environment, their basic interaction, and the progression

between night and day. It should be noted that the `Environment' view is part of the `Bay of Biscay

Model' view and that the only reason for having separate views is to aid the user in viewing di�erent

levels of abstraction in the TSSD Prototype. The �nal two views are the `Uboat' (Figure 9) and

`Aircraft' (Figure 10) views, which display the detailed behaviors of each agent.

What can be observed from an initial look at each of these views is the hierarchical structure
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Figure 7: TSSD Prototype - Bay of Biscay Model View
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Figure 8: TSSD Prototype - Environment View

of the actions that take place in the real world and the simulation. For example, in the Uboat

view (Figure 9) there are many actions that can happen while the Uboat is crossing the bay such

as they can be on the surface, submerged and moving, submerged and stopped, or be destroyed.

Furthermore, the boundaries of the real world abstraction and the simulation can clearly be seen.

We can observe in the Environment view (Figure 8) that the agents involved are the Aircraft and

Uboats and that the time of day plays a role. In the Model view (Figure 7) we can see the simulation

details, the building of the environment, the creation of new agents, and other important simulation

aspects that de�ne when the simulation begins and ends.

Although the visual aspects of the TSSD prototype provide a lot of information for the reader,

it does not provide enough information for the purposes of sanctioning this conceptual model or

building the simulation. This is where the database of information/properties related to each model

shape �lls in the gaps. For each shape in the TSSD Prototype there are a series of properties that

further de�ne the details of that shape. In the Visio �le of the TSSD Prototype, whenever a shape
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Figure 9: TSSD Prototype - Uboat View
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Figure 10: TSSD Prototype - Aircraft View
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Figure 11: Uboat Decision Shape Property Example

is selected a Shape Data Window opens and prompts the user to �ll out the properties associated

with that shape. For example, a screen shot of the TSSD Prototype in Visio shows the Shape Data

Window for the `Depart Port' decision shape in the Uboat block in Figure 11. In the `Depart Port'

shape there are �ve associated properties: Member Of, Transitions To, Behavior, Pseudo Code, and

Source. The associated value of the Member Of properties is In_Port because this is describes

the block that the decision shape is residing in. Furthermore, the Transitions To property is set

to Cross_Bay because this describes the block that is transitioned to as the result of the decision.

The Behavior property describes in plain English the behavior that the decision shape executes

and in turn the Pseudo Code property describes the pseudo code to execute the described behavior.

Finally, the Source property describes the source of the behavior, and in this case, Champagne's

2003 Dissertation [16] is referenced. For more details on all of the properties associated with each

shape, see the earlier section discussing the TSSD Prototype design.

To further de�ne the functionality of the TSSD Prototype we will spend the remainder of this

section describing the Uboat block of the TSSD Prototype. By the end of this section the reader

should have a good understanding of how to read and interpret the TSSD Prototype. Therefore, if

the reader wishes to learn more about the details of the simulation, then please review the TSSD

Prototype �le. Before proceeding to the detailed description of the Uboat block it may would be

helpful to have both the TSSD Prototype visual of the Uboat block as well as the properties of all

of the shapes included in the Uboat block. Although this can be done dynamically with the Visio
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�le, all of the necessary information to aid in understanding the Uboat block have been included in

this report. The visual of the Uboat block is shown in Figure 9. The list of action properties, block

properties, decisions properties, and interaction properties of the shapes within the Uboat block are

shown in Figures 12, 13, 14, and 15, respectively.

In the previous sections, the real world description of the Bay of Biscay and the behavior of

the Uboats was provided. From this real world description, we used the principles of the TSSD

Prototype to develop a conceptual model of the Uboat behavior that captures the desired level of

abstraction, provides documentation of that conceptual model, and is designed for simulation. The

�rst thing to notice is that in the description we stated that there are 70 Uboats. However in the

TSSD Prototype there is only one Uboat block. This does not mean that all of the Uboats are

homogeneous or that there is only one Uboat. In fact, the Uboats are heterogeneous because each

Uboat is assigned to have di�erent home ports and destinations in the North Atlantic (this aspect

is de�ned in the Initialization block). However, while some of the parameters of the Uboats are

heterogeneous, their behavior logic is homogeneous. Therefore, we can represent all Uboats with a

single conceptual block with generic parameters that can be adjusted for each individual Uboat. It

is important to remember here that we are not building the TSSD Prototype as if it were a machine

executable simulation. Instead, the TSSD Prototype provides a medium between the real world

and the simulation, so we leave the actual construction of the simulation to the simulationist. The

goal of the TSSD Prototype is to lead to better simulations and simulation projects; not to be a

simulation itself. Thus, we are concerned with representing Uboat behavior in a conceptual sense

that can eventually be programmed into a computer simulation.

For simplicity we will describe the behavior of a Uboat as if it were starting at it's home port

and is about to cross the Bay of Biscay in route to the North Atlantic. Therefore, we will begin in

the In_Port block (the Uboat is in it's home port). Within the In_Port block there is one action

shape, Set Departure, and one decision shape, Depart Port. While in this block the Uboat executes

the Set Departure action, which sets a departure time to be 25 to 40 days into the future, and the

Uboat evaluates whether it is time to depart based on the Depart Port decision shape. As described
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in the Depart Port decision shape properties, the Uboat will transition to the Cross_Bay block

when the current simulation time is equal to the departure time.

When the Uboat transitions to the Cross_Bay block, it will immediately transition to the

On_Surface block within the Cross_Bay block. This behavior is denoted by the circle with the arc

pointing to the On_Surface block. Before describing the behaviors that occur in the On_Surface

block, it is important to note that there are two shapes that are members of the Cross_Bay block

which have precedence over all of the shapes within the On_Surface, Submerged, and Destroyed

blocks because they are at a higher level of aggregation. In other words, the Uboat can be crossing

the bay in many di�erent states, but once they reach their goal they will automatically transition

to the In_Atlantic block regardless of whether they were submerged or not. This idea of hierarchy

is very important in the TSSD Prototype because it helps capture and convey complex behaviors.

Within the Cross_Bay block the Set Goal action shape sets a goal location in the North Atlantic

and the Goal Reached decision shape evaluates when that goal is reached and to then transition to

the In_Atlantic block.

If the goal has not been reached, then the internal blocks of the Cross_Bay continues to execute.

Within the On_Surface block there are several di�erent shapes. The Charge Battery action shape

is a reoccurring action shape that charges the batteries used in submerged travel. The Travel action

shape is also a reoccurring shape that moves the Uboat towards the goal at 10 knots. In essence,

the Travel action shape is updating the location, which is being evaluated by the higher level Goal

Reached decision shape. The Scan for Aircraft interaction shape is a reoccurring action that accesses

all of the Aircraft in the simulation location and calculates whether they can detect any aircraft in

their area. For more details, see the Uboat Interaction Shape Properties in Figure 15. The Bombed

by Aircraft interaction shape checks to see if any Aircraft have recorded hitting a Uboat. Finally,

the Surface Policy decision shape determines whether it is time to transition to the Destroyed block

of the Submerged Block. If the Uboat has been hit, then it will transition to the Destroyed block.

If the Uboat has spotted an Aircraft, or if the sun is up, then the Uboat will transition to the

Submerged block.
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Within the Destroyed block there is only one action block: End Uboat. The End Uboat action

shape removes the Uboat from the simulation. It is important to reiterate that while the TSSD

Prototype is building a conceptual model, it is also building the foundation of the simulation.

Therefore, including actions such as removing the Uboat agent is important to include in the TSSD

Prototype.

Inside the Submerged block, there is another level of blocks as well as the di�erent Surface

Policy decision shape. This Surface Policy decision shape evaluates when it is time to transition to

the On_Surface block based on the surfacing policy set forth in Scenario 1. Once the Uboat has

transitioned to the Submerged block it will immediately transition to the internal Moving block.

Thus, the Uboat can be crossing the bay, submerged, and moving under water. Within the Moving

block there are two action shapes and one decision shape. The Travel action shape is a reoccurring

shape that moves the Uboat towards the goal at 2.5 knots. The Deplete Batteries action shape is also

a reoccurring shape that depletes the battery charge. The Battery Life decision shape determines if

the batteries have been completely depleted and then transitions the Uboat to the Stopped block.

Within the Stopped block the Travel action shape moves the Uboat towards the goal at 0 knots.

If at anytime the current location of the Uboat in the environment equal the goal coordinates

of the Uboat, then the Uboat in this case will transition to the In_Atlantic block. Within the

In_Atlantic block the Set Departure action shape sets the time at which the Uboat will be begin

heading toward it's home port. The Depart Port decision shape evaluates whether the current time

equals the departure time at which point the Uboat will transition to the Cross_Bay block. Also,

it is important to note that the goal coordinates this time will be the Uboat's home port and not

the North Atlantic.

Although this description of the Uboat's behavior occurring to the TSSD Prototype has been at

a relatively high level, we believe that it has provided most the knowledge needed in order to better

understand how to read and interpret the TSSD Prototype. However, much more detail about the

Uboat and the entire Bay of Biscay simulation as well as the `whys' for each behavior is available in

the TSSD Prototype File. The ability of the TSSD Prototype to provide both high and low levels
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Figure 16: Bay of Biscay ABM Simulation Screen Shot

of details further �lls the need for evaluators of various level of expertise to be able to understand

the conceptual model that the simulation was based upon. Thus, the TSSD Prototype can be used

as a tool for sanctioning and as a tool for verifying that the simulation performs as intended.

6.3 Sanctioning the Reproduced Bay of Biscay ABM Simulation

After constructing the TSSD Prototype of the Bay of Biscay simulation to build and document the

conceptual model, the next step was to build the actual Bay of Biscay ABM Simulation. Using the

TSSD Prototype as a guide and veri�cation tool, the reproduced Bay of Biscay ABM Simulation

was constructed. Figure 16 shows a screen shot of the simulation in action (the dark ellipses are

submerged Uboats). From this screen shot, it can be seen that Uboats are crossing the Bay of Biscay

and Aircraft are searching 50 NM by 50 NM areas denoted by the squares in the bay. Furthermore,

because it is night (indicated by the dark circle at the bottom of the �gure) most of the Uboats are

surfaced and some are submerged because they have spotted a plane.

Once we veri�ed with the help of the TSSD prototype that the simulation was running as

intended the next step was to determine the sanctionability of the simulation. In this case, we are

sanctioning our simulation against the results of Champagne's Dissertation and not directly with

the real world. As a result of the discussion in the previous chapters, we both conceptually and

87



Figure 17: Bay of Biscay ABM Simulation Results

operationally sanctioned our simulation in order to ensure that the entire simulation is sanctionable.

To conceptually sanction our simulation, we used the TSSD Prototype to document and describe

how we abstracted the conceptual model from Champagne's Dissertation. For behavior in the

TSSD Prototype of the Bay of Biscay, and therefore executed by the simulation, we have included

a source that provides the `why' justi�cation for each of those behaviors. For the few behaviors

where Champagne's description was unclear we made sure to document the behavior was based on

another reference or was an assumption on our part. Therefore, based on the documentation that is

required by and is within the TSSD Prototype we believe that we created a sanctionable conceptual

model of the Bay of Biscay simulation that closely mimics Champagne's 2003 Dissertation.

To operationally sanction our simulation three key statistics were collected and compared to the

results published in Champagne's Dissertation. These statistics were the total number of Uboat

kills, the total number of Uboat sightings, and the total number of sortie hours �own at the end of

the simulation. A total of 20 replications of the simulation were performed and the results are shown

in Figure 17. From this data, several two-sided Two-Sample t-Tests assuming unequal variances
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Figure 18: Two-sided Two-Sample t-Test Results

were performed at 95% level of signi�cance. The results from these tests are displayed in Figure 18.

The conclusions that can be drawn from the statistical tests are that our reproduced simulation

is not signi�cantly di�erent in terms of the number of kills and the number of sightings. However,

it is signi�cantly di�erent in terms of the number of sortie hours �own. There are several possible

reasons for this discrepancy. The �rst is that it is unclear exactly how Champagne modeled the

Aircraft schedules. In his dissertation he mentions that there are weather delays, however he does

not mention the frequency of these delays. Also, there are several di�erent ways one could interpret

his description of the Aircraft scheduling procedure and length of �ight time. For example, he says

that Aircraft searched the Bay until 70% of the fuel was depleted. Based on a few sentences we

interpreted this to mean that the Aircraft were searching for 7 hours until they began to return to

the base, but one could interpret this aspect of the Aircraft �ight time di�erently.

Another potential reason for this discrepancy is that Champagne does not discuss how he col-

lected the number of sorties hour �own. Di�erent interpretations of when the Aircraft are taking

part in searching for Uboats could result in di�erent number of sortie hours �own. This point brings

up an unforeseen need that a future version of the TSSD Prototype needs to incorporate and clearly

de�ne how measures of performance are captured.

A third potential reason for this discrepancy is the way in which Champagne arrived at getting

his number of sortie hours to match the historical results. The number of Aircraft in his simulation

was set to 19 because it resulted in his simulation obtaining results that were close to the historical

�gures. This modeling �tting aspect of his simulation could present further di�culties and complex-

ities to our problem of reproducing his simulation because we are not 100% certain how he modeled

every single aspect of the airplane and furthermore we cannot be 100% certain that his given de-

scriptions were accurately being executed by his simulation. In other words, because this aspect

89



of his simulation was �tted to reality, we have a hard time knowing whether our interpretation of

his simulation is wrong or whether his simulation did not execute as he describes since he adjusted

the parameters of the model until it �t accordingly. Certainly we are not accusing Champagne of

presenting an unveri�ed simulation (in this case Champagne had no choice but to �t the model to

match the historical �gures because there was no detailed documentation available), instead we are

pointing out one of the many troubles that might be encountered when attempting to reproduce

a simulation. Reproducing a simulation when the original simulation used model �tting may be a

more challenging task than reproducing a simulation that is built using model testing.

Although one of the three measures of operational performance was signi�cantly di�erent, it

was one of the least critical measures in terms of the objective of the original simulation which

was to evaluate strategies of the Aircraft and Uboats. As a result, we can reasonably say that

our simulation is both conceptually and operationally sanctioned. Therefore, we have shown that

putting emphasis on developing a conceptual model using the TSSD Prototype can lead to both a

conceptually and operationally sanctioned simulation.

7 Concluding Remarks and the Next Steps Towards Improving and

Extending the TSSD Prototype

By using the TSSD Prototype to build this simulation many opportunities for improving the tool

were identi�ed. Although some of these needed improvements have been alluded too earlier, a

compiled list of the next steps and action items to improve the TSSD Prototype is given below:

1. A more complete review of ABM Simulation articles is needed to better understand how the

authors build and sanction their simulations. By having this data:

(a) A better justi�cation for the need of the TSSD Prototype can be made;

(b) The TSSD Prototype can be better geared for what is needed; and

(c) Those who use ABM can be better aware of the current status of the �eld today.

2. A thorough review of modeling tools and techniques in the �elds of Systems and Software
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Engineering needs to be conducted such that:

(a) The TSSD Prototype can be better de�ned within the wider modeling and simulation

community; and

(b) Other modeling techniques and practices can be incorporated into the TSSD Prototype.

3. Several additions to the TSSD Prototype need to be made. Including:

(a) An additional property for the action and interaction shapes is needed that de�nes time

and frequency of occurrence. While attempting to reproduce the Bay of Biscay simula-

tion, there was a glaring need to better de�ne the timing aspect of the actions within

TSSD Prototype for simulation. For example, the notion of travel is easy to conceptually

comprehend, but abstracting this continuous action into a discrete action is a critical

part of building the simulation. Therefore, adding another property that better de�nes

continuous actions and time is needed.

(b) An additional shape or property is needed that completely de�nes the collection of a key

statistics used to evaluate the operational e�ectiveness of the simulation. As discussed

earlier, not clearly de�ning how statistics from the simulation are de�ne can be just as

troublesome as not clearly de�ning behaviors of the simulation.

(c) A naming or numbering convention for the shapes is needed to better show the hierarchy

of the shapes, relationships between them, and to allow for easier identi�cation of unique

shapes. Through using and explaining the TSSD Prototype it become clear that a naming

or numbering convention such as the one in IDEF0 is needed.

(d) The representation of the interactions and coordination between agents needs to be im-

proved and better de�ned. Currently, only a dotted line represents the passing of in-

formation between the Aircraft block and the Uboat block (see Figure 8). Also, the

coordination of the Aircraft search areas is represented by a dotted block. Whether this

is the best way to handle this is debatable, however the reoccurring theme here is that
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actions that take place in parallel on the Agent level are not well represented by the

TSSD Prototype to date.

4. The execution of the Microsoft Visio 2007 template needs to be reviewed and updated accord-

ingly when changes are made to the TSSD Prototype.

5. The TSSD Prototype needs to be thoroughly tested to ensure that it is capable of building

conceptual models of any type of agent-based simulation without the addition of special add-

ons. Furthermore, these tests should be able to show the e�ectiveness and advantages of using

the TSSD Prototype to help build a simulation in terms of documentation and sanctioning.

6. A guide for the using and interpreting the TSSD Prototype needs to be developed to encourage

the use of the TSSD Prototype and to provide a baseline documentation of the proper use of

the tool.

7. The feasibility of using the TSSD Prototype for more applications other than ABM should

be explored. For example, is the TSSD Prototype capable of being used to build generic

simulations and/or can the TSSD Prototype be used as a teaching tool to aid students in

building better simulations?

Completing these next steps will further improve the TSSD Prototype and the concepts discussed

throughout this technical report.
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